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PREFACE

THE study of Mechanics as presented in this volume is founded

upon a course in mathematics extending through the Calculus.

It is assumed, moreover, that the student has already become

familiar with the fundamental ideas of force, energy, and work

through such preliminary courses as are included in textbooks

on General Physics. In short, this volume presents the subject

of Mechanics in that relation to other mathematical subjects which

has become established in the curricula of the technical schools

of this country. It should be emphasized, however, that the

volume includes, for purposes of review, a discussion of the

fundamental notions and many simple exercises involving these

notions.

Attention may be called to the arrangement in the text. This

arrangement is founded upon experience in teaching the subject

for many years in the Sheffield Scientific School of Yale Univer-

sity. In 1903 Professor E. R. Hedrick prepared a mimeographed
text which followed the conventional arrangement of treating

statics first. This text was used for one year. It then developed
that an obvious disadvantage existed in not taking up directly

upon the conclusion of the study of the Integral Calculus the

calculation of the integrals of Mechanics involving centers of

gravity and moments of inertia. The point was that this formal

integration out of the way, the continuous study of Mechanics

proper need not afterwards be interrupted. Acting upon this

conviction, the present text was prepared essentially as here

published in 1907, and has since that time been used in mimeo-

graphed form. The general plan of the arrangement is that

a single problem may at any one time be under discussion. Thus,
when the question of energy of rotation is solved, the appearance
of the moment of inertia integral presents no complication. This

has been disposed of already. Similarly, the equations of motion

presenting themselves as solutions of the force equations have
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been previously discussed. Another feature is the departure
from convention by arranging types of motion under the corre-

sponding fields of force. In this way it is made clear that the

emphasis is to be laid upon the force and velocity of projection.

In the case of a book which, like the present volume, has been

long in the making, it is difficult to record definite acknowledg-
ments of aid and indebtedness. There are included in the text

many problems suggested by past and present members of the

mathematical department of the Sheffield Scientific School.

Further, the text has been the subject of discussion at frequent

departmental conferences, and for all suggestions received on

these occasions the authors gratefully here record their thanks.

The diagrams were skillfully prepared by Mr. S. J. Berard of

the department of mechanical engineering.

NEW HAVEN, CONNECTICUT
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THEORETICAL MECHANICS

CHAPTER I

MOMENTS OF MASS AND INERTIA

1. Center of gravity. It is shown in a subsequent chapter

(Art. 108) that the influence of the weight of a solid in all

questions in mechanics is precisely that of a force equal to the

weight applied at a point called the center of gravity* of the solid.

It is assumed that the student is familiar with simple facts con-

cerning the center of gravity. For example, the center of gravity
of a straight line (or thin straight rod) is its middle point.

Again, the center of gravity of a triangle is the point of inter-

section of the medians.

This statement may be proved as follows. Divide the

triangle into thin strips by lines parallel to one side. Draw
the median AD. The center of gravity of each strip lies on

AD. Hence the center of gravity of the triangle lies on AD.

Similarly, the center of gravity lies on the median BE. This

establishes the statement.

The formulas for the center of gravity in-

troduced in the following sections involve mag-
nitudes called the moments of area or moments of mass. The
student is asked to accept these formulas as definitions. Later,

in discussing weight the formulas appear as giving the center of

gravity.

2. Moment of area. Consider an element of any plane area

y = ArrAy,

at the point (z, y). Then the products
9l

X
are called the moments of AA with respect to the axes OY and

OX, respectively.
* Called also center of mass.

1
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O

(I)

This definition is extended to any finite area

A in the usual way by summation and taking
limits. Hence if Mx and My denote the mo-
ments of area for the area A with respect to the

axes OX and OY. respectively, then

( limit
i

Ax = O,

.
Ay = O,

("

limit

fy = f xdA = f (xdxdy = Ax = O, VV ocAxAy
Ay = O,

=
j*

ydA =
J

The Center of Gravity of any given area

given by the quotients

is the point (#,

xdA
area area if area area

In these formulas x and y are the coordinates of any point within

the area.

The common denominator (the area of the giv^n figure) must
be found, if not otherwise known, by integration; that is,

Area = / / dxdy.

In working out examples using (II) calculate the moments

/ I xdA and / I ydA, first, and then divide by the area itself.

Dimensions. Whenever it is desirable to express numerically
the magnitude of a physical quantity, we do so by choosing a

unit of that quantity. It is convenient, when possible, to choose

the units of different kinds of quantities so that some of them

depend upon others. The units which are chosen arbitrarily are

called fundamental. The derived units are those which are so

defined as to depend upon the fundamental units. In mechanics

it is custoL try to choose as fundamental the units of length, mass,

and time, and all other units are made to depend upon these.

For example, if the unit of length is the foot, the unit of area

is defined as the area of a square whose sides are one foot in

length. The relation between the derived unit of area and the
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fundamental unit of length is then expressed by the dimensional

equation, Area _ iength2.

Similarly, the dimensional relation between the derived unit of

volume and the fundamental unit of length is

Volume = length
8
.

The dimensional equation is a concise way of expressing the

relation between the units of different quantities, and is not to

be interpreted as an ordinary algebraic equation.

Moment of area has been defined as the product of area by
distance, and hence the unit of moment of area is of the third

degree in the unit of length.

Moment of area = area x length = length
3

.

The fact that every term of an equation involving physical

quantities must be of the same degree in the fundamental units

furnishes a useful check in the problems of mechanics. For

example, in (II) ic is of the first degree in the unit of length, and

hence the second member of the first equation must also be of the

first degree. This is easily verified, since the dimensional relation

<
r

Tl'\7' 1G it ir i ilO
& ivc& My length**

area length
2

3. Symmetry. The center of gravity will lie upon any axis of

symmetry which the figure may possess. For ex-

ample, if OY is such an axis, we may divide the

figure into the equal elements Ax&y and sum up,

taking two symmetrical pairs at a time. Then the

sum of the moments with respect to OY for two

such pairs, that is, x
lkxky + 2A:A#, will vanish,

since x
l
= x

2
. Hence the mo-

ment with respect to Y, that is,

xdA, also vanishes, and x = 0.

ILLUSTRATIVE EXAMPLE. Find the center of gravity

ST of the area bounded by y
2 = 2 px and x = h.

Solution. Evidently y - 0.

Calculate the moment of area with respect to OF
This is, by (I),

f ft / r 2px _.
/.

My =\ \xdxdy = \
z i / dydx = 2\/2p (

J J JO Jv2pt JO
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Next find the area. This is

/. ..
+V2px

JO ./-VjfcS

by (II).

PROBLEMS

. If the equation of the curve is given in polar coordinates (p, 0), place

in (I) and (II) dA = pdpdd, x=p cos 0, y =p sin 0.

1. Find the center of gravity of the triangle bounded

by the lines y = mx, y =0, x = a. . r-la u- ma
^fi/to. *t/ Y U-j y .

2. Find the center of gravity of the triangle bounded

by the lines y = mx, y = -mx, y = b. Ans. x = 0, y= f 6.

3. Find the center of gravity (1) of a quarter of a

circle in the first quadrant ; (2) of one sixth of a circle, supposing the x-axis to be

an axis of symmetry. Ang (1)

- = -
= 4a

.

(2)

-
= 2a

?

-
= Q

Sir IT
"

4. Find the center of gravity of a quadrant of the ellipse + -L = j.
a2 b2

* 4a- 46
"Sir1

'

^"S^'

5. Find the center of gravity for the area bounded by y
2 = 4 ax, y = 0, x = 6.

.4ns. x = f 6, y = | \/a6.

6. Find the center of gravity of the area bounded by y
2 = 4 ax, x = 0, y = b.

40a 4

7. Find the center of gravity of the area bounded by the semicubical parabola

8. Find the center of gravity of the area bounded by y = a sin - and the

x-axis between x = and x = air.

Ans. x = ^ air, y = \air.

9. Find the center of gravity of the area bounded by the hyperbola xy = c2
,

x = a, x = b, and2/ = 0. An^ -_ b-a
,

- _ c2 (fe
- q)

log 6 log a 2 aft (log 6 log a)

10. Find the center of gravity of the area bounded by the parabola y
2 = 4 ax

and the straight line y = mx. g a 2 a
Ans. x = -, y=-

5 m* m

11. Find the center of gravity of the area included by the curves y
2 = ax

and *2 = ^- Ans. x = AMy = AeM
12. Find the center of gravity of the area bounded by the cardioid

P = a (1 + cos 0) . Ans. x = | a.
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13. Find the center of gravity of the area included by a loop of the curve

p = a cos 2 e. _ 128 oV2
Ans. x =

105 IT

14. Find the center of gravity of the area included by a loop of the curve

P = a cos 30. _ 81 av^

15. The lengths of the parallel sides of a trapezium are a and b. Show that

the center of gravity of the area divides the line joining the middle points of the

parallel sides in the ratio ( + 2 6)/(2 a + 6).

16. If the sides of a triangle be 3, 4, and 5 feet, find the distance of the center

of gravity from each side. Ans. f, 1, f foot.

17. Find the center of gravity of the area bounded by the cissoid

i& f) ft fr\ -Y-3y{4U JO) JC

and its asymptote x = 2 a. Ans. x = f a.

18. Find the center of gravity of the area bounded by the witch

y?y = 4 a2 (2 a - y)

and the axis of X. Ans. y = % a.

19. Find the center of gravity of the area bounded by the parabolas y
2 = ax

and y'
2 = 2 ax x2

,
which is above the axis of X

E_ a 15n--44.
- a

15 v 40'
'

3 IT 8

20. Find the distance from the center of the circle of the center of gravity of

the area of a circular sector of angle 2 B. .
2

sin 6
^i.ilSt -JT T '

21. Find the distance from the center of the circle of the center of gravity of

the area of a circular segment, the chord subtending an angle 2 B.

Ans. -
3 sine cos e

4. Theorem on the center of gravity. The center of gravity
of an area is afixed point relative to that area. That is, the posi-

tion of the center of gravity does not de-

pend upon the axes of coordinates, but

upon the area itself only. The proof of

this familiar truth is as follows.

Let L be any line, and assume its equa-
tion in the normal form (55 (e), Chap. XIV)

/
x cos a) + y sin o> p = 0.

Consider the element of area AA= ArrAy at (#, /), and let the

distance from L to (z, y) equal r. Then the product r&zky is
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called the moment of A^4 with respect to the line L. Extending
to a finite area as before, the double integral

(1) Ml

is called the moment *
of area with respect to L.

This integral may be expressed in terms of the moments Mx

and My with respect to OX and OF" as follows. By Analytic

Geometry,f or formula 56, Chapter XIV,

r = x cos o + y sin <o p.

.. I irdA = I I (#cos a>+y sin co p\dA
J J J J

= cos0l IxdA + sintol lydApi I dA

= cos o)M
y + sin a>Mx pA.

Using formulas (II), putting A = Area of the figure, then

M
y
= Ax, Mx = Ay, I

J
dA =A. Hence

ML = (x cos co + y sin to p~)A = rA,

\ir = distance from L to the center of gravity (#, ?/).

Hence this

THEOREM. The moment of area of a plane figure with respect

to any line equals the product of the area and the distance from that

line to the center of gravity. Hence the moment of area with respect

to any line through the center of gravity

^ is zero.

Now suppose we have worked out

the coordinates of the center of gravity
O for a plane figure with respect to a

given set of axes OX and OY. Let

/ X
O'X', 0' Y' be any other set of axes.

Let the new coordinates of any point in the area be (x' , /').

Also let the new coordinates of (7 be (x' , y'~). Then, by Art. 2,

* Also called the first moment, because of the appearance of the first power of the

distance r in the integral.

t Smith and Gale, Elements of Analytic Geometry (Ginn and Company), p. 106.

Future references are to this volume.
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formulas (II), the coordinates of the center of gravity found by
using the new axes are

area area

By the theorem just given we have, however,

I I x'dA = moment of area with respect to OY' = Ax\

Hence

y'dA = moment of area with respect to OX' = Ay' .

=
(a;', ?/') ; that is, the same cen-A A

/

ter of gravity is found by using the new axes. This investiga-

tion, therefore, verifies a well-known property of the center of

gravity, namely, that it is a fixed point relative to the area.

SOLIDS OF REVOLUTION

5. Moment of mass. The volume of a thin flat plate or lamina

equals the product of its surface by the thickness. If of uniform

density, its mass is the product of the volume and the density.

For the present, the density will be assumed constant and will be

denoted by r. The lamina being thin, its center of gravity is

sensibly the same point as the center of gravity of its surface or

area. The moment of mass of a lamina with respect to a plane

parallel to its surface equals the product of its mass and the dis-

tance from the plane to its surface. The plane being parallel to

the surface of the lamina, every point of the lamina is at the same

2 Z

(a) 0>) (c)

distance from the plane. Passing now to a homogeneous (of

uniform density = r) solid of revolution, we may slice up such a

solid by a series of equidistant parallel planes perpendicular to

the axis of revolution (fig. a). Assume OX as this axis, and Az
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as the common thickness of the slices. Now consider each slice

" trimmed up
"
into a circular lamina, one face of the slice remain-

ing unchanged, so that the solid is now replaced by a new solid

obtained by revolution of the set of rectangles in fig. b. The
mass Am of any one of the circular laminse is (fig. c~)

Am = rAv = r iry
2
Ax,

for y(= z) is the radius of the base and Ax the thickness. Since

the lamina is parallel to YZ^ its moment of mass with respect to

YZ is xAm or r Try^Ax times x. The total moment of mass of

all the circular lamince may then be represented by "ZxAm or also

^TTry^xAx. The moment of mass of the solid itself is then

defined as the limiting value of this sum when Ax approaches zero.

Using for this the symbol Myt ,
we have

r r x_\

(III) Myz = \ xdm =
TirJ xy

zdx\ =
^x _ Q J^TTrey-Aa; J.

The method explained here of slicing the solid of revolution

into circular laminae is very important and should be mastered by
the student.

The center of gravity of a solid of revolution whose axis is

along OX is defined as the point (x, y, z), where

,*- I xdm TTT / xy^dx

(IV) z=^i^=^-=>l- , ^ = 0, z = 0.
mass mass mass

It is clear that y = z = 0, since the centers of gravity of all the

latninse are on the axis of revolution, and hence the center of

gravity of the solid is on the axis of revolution.

In the calculation of x, we need to find two integrals,

Myz
= TTT / xy^dx and Mass = I dm = TTT I y

2
dx,

in which y is to be found in terms of x from the equation of the

generating curve.

Dimensions. The quantity moment of mass has been defined as

the product of mass by distance. Hence in terms of the funda-

mental units of mass and of length the dimensional relation is

Moment of mass = mass X length.
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PROBLEMS

HOMOGENEOUS SOLIDS OF KEVOLUTION

1. Find the center of gravity of the cone formed by revolving the line hy = ax

around the a;-axis between x = and x = h. Ans. x = f h.

2. Find the center of gravity of a hemisphere.

Ans. Distance from base = f radius.

3. Find the center of gravity of the paraboloid of revolution formed by revolv-

ing about the it-axis the parabola t/
2 = 4 ax from x = to x = b.

Ans. x = | b.

4. The area bounded by the lines y = 0, x = a and the curve y'
2 = 4 ax is

revolved about the y-axis. Find the center of gravity of the solid formed.

Ans. y = a.

x? ifi

5. The area of the ellipse ^ + '-^
= 1, in the first quadrant, is revolved about

the x-axis. Find the center of gravity of the solid formed. Ans. x = f a.

x2
t/
2

6. The area bounded by the lines y = 0, x = 2 a and the hyperbola j~
= 1

is revolved about the x-axis. Find the center of gravity of the solid formed.

7. The area" bounded by the lines x = 0, x = a, y = 0, and the hyperbola
x2

y'
2

f-.. + 1 = is revolved about the x-axis. Find the center of gravity of the solid
d1- b*

formed.

8. The area bounded by the lines y = 0, x = -, and the curve y = sin x is re-
2

volved about the x-axis. Find the center of gravity of the solid formed.

9. The area bounded by the lines x = 0, x = a, y = 0, and the curve y ex is

revolved about the x-axis. Find the center of gravity of the solid formed.

10. Find the center of gravity of the solid generated by a semiparabola

bounded by the latus rectum, revolving round the latus rectum.

Ans. Distance from focus = -fa of latus rectum.

PAETICULAR SOLIDS

6. Moment of mass. Certain solids may be divided by a series

of parallel planes into laminse whose sur-

faces depend in a simple manner only upon
their distances from a parallel fixed plane.

Taking this plane as YZ and considering a

lamina at the distance x, then if A is its

surface, by hypothesis, A=f(x), a known
function. Hence Aw = rf(x) Ax (if the

thickness of the lamina is Az). The moment of mass of the

solid with respect to YZ will then be defined as equal to



10

(1) z
= Cxdm =

THEORETICAL MECHANICS

= A^ 2TO/(aC

The distance x of the center of gravity from the YZ-plane is of

course equal to

(2) x =
Mass

r / f(x) dx

since Mass equals I dm = r I f(x) dx.

In (2), the uniform density r cancels out. The function

f(x), it is to be remembered, is the area of a cross section parallel

to YZ at the distance x.

ILLUSTRATIVE EXAMPLE. Find the center of gravity of any cone, pyramid,
or cylinder of uniform density.

Solution. The definition of a cone or pyramid
must be clearly understood. This is the following.

Given any plane area B and a point V without it.

Draw the line VP through Fand any point P on the

boundary of the area B. Now let the point P move
around the boundary of B, carrying in its motion the

line VP. The surface thus generated by the line FP,
called a generator, and the area B bounds a solid.

If B is bounded by straight lines, the solid is a

pyramid, otherwise a cone. The area B is called the

base and V the vertex.

The following theorem is now assumed for any cone or pyramid. Take a section

A parallel to the base B. Then the areas ofA and B are in the same ratio as the

squares of their distancesfrom the vertex V.

To apply formula (2), let the area B lie in the FZ-plane. Let the section A be

at the distance x from the base. Draw the line VH perpendicular to the base B, .

and let VH =h = altitude. Then

distance of the area A from vertex h x,

distance of the area B from vertex h.

.: by the theorem, - = (
h ~^ 2

,
or A = (A

-
a;)

2
.

B h'2 h2

Hence in (2), /() =-^(h- xy
2

.

C
hB

Jo /j2

r h
rtM=r( (h-X^dx = \rBh.

Jo h'
2

Hence x = h.
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Now it is clear that the centers of gravity of all sections of the cone or pyramid
which are parallel to the base B will lie on a line joining V to the center of gravity

of the base. This line is called the axis. Hence the

THEOREM. The center of gravity of any homogeneous cone or pyramid is the

point on the axis which is one fourth of the distance from the

base to the vertex.

A cylinder is the solid obtained thus. Let a generating

line AA' move always parallel to itself, while the point A
follows a plane curve inclosing an area B. The solid

bounded by this surface, by the area .B, and by the section B 1

parallel to B, is called a cylinder. The line joining the cen-

ters of gravity of B and B' is called the axis. This line is parallel to the generator

AA'. Clearly, the center of gravity of the* cylinder is the middle point of the

axis.

PROBLEMS

1. Find the center of gravity of a frustum of a pyramid with a square base.

2. Find the center of gravity of an elliptic cone. The equation of an elliptic

cone is ^- + = x2
. Take the plane x = 1 for the. base of the cone.

a2 62

3. Find the center of gravity of the solid bounded by the elliptic paraboloid

+ V- = z, and the plane z = \.

a2 b2

4.* Find the center of gravity of a right conoid with circular base, the radius of

the base being r and altitude a.

5. A rectangle moves from a fixed point, one side varying as the distance from

this point, and the other as the square of this distance. Find the center of gravity

of the solid generated while the rectangle moves a distance of 2 feet.

6. On the double ordinates of the ellipse + V- =1, isosceles triangles of verti-
2 62

cal angle 90 are described in planes perpendicular to that of the ellipse. Find the

center of gravity of the solid generated by supposing such a variable triangle moving
from one extremity to the other of the major axis of the ellipse.

7. Given a right circular cylinder of altitude a and radius of base r. Through a

diameter of the upper base pass two planes, which touch the lower base on opposite

sides. Find the center of gravity of the solid included between the planes.

8. Two cylinders of equal altitude a have a circle of radius r for their common
upper base. Their lower bases are tangent to each other. Find the center of

gravity of the solid common to the two cylinders.

9. An anchor ring is cut in two equal parts by a plane through its center, which

passes through its axis. Find the center of gravity of one half.

*For the volumes of the solids of examples 4-8, see Granville, Differential and

Integral Calculus (Ginn and Company), p. 422. Future references are to this volume.
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7. Moment of mass. Any solid. Consider any solid and an

interior point (x, y, z). The density of this solid may be variable.

In this case, we assume the density r at any interior point (#,y, z)

to be some function of the co-

ordinates, say

(1) density at (x, y, z)
= r(z,y,z).

Taking an element of vol-

ume
A v =

we have

z,

element ofas the

mass at (x, y, z),

Am = T (#, y, z) Av.

The moment of mass for this element with respect to the coordi-

nate planes we define thus :

*

with respect to YZ=x- Am,
" " " ZX=y- Am,

The moments of mass of the solid with respect to the coordinate

planes are derived from these by summation and passing to the

limit as A#, Ay, and Az approach zero. That is, we define for

any solid,

- (*J fsedm, Ma = f f ydm, Mxy
= \ \ \zdrn,(V)

the limits being so chosen that the entire solid is included.

mulas (V) are included in the single formula

rdm,

For-

where r is the distance from one of the coordinate planes to any
interior point of the solid. In these formulas x, y, and z are the

coordinates of any point within the solid. The center of gravity
of the solid is then the point whose coordinates x-, y, z are given

(VI) -,mass mass mass
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In formulas (V) and (VI) we set

dm = T (#, y, z) dxdydz, mass = I I I dm.

In determining the center of gravity of a solid, four integrals,

namely, the moments with respect to the three coordinate planes-

and the mass, must be calculated.

Homogeneous solids. In this case the density r is constant.

For such solids, a theorem corresponding to that of Art. 3 holds,

namely,
The center of mass of a homogeneous solid lies in any plane of

symmetry of the solid. The proof is left to the reader. To derive

formula (III) (Art. 5) from (V), proceed thus. We have

M
yz
= T I I I xdxdydz= T fill dydz \xdx-.

a;= constant

But I/ dydz = area of cross section in the plane x = constant,

x= constant

and hence equals iry
1 under the conditions of Art. 5.

. . Myz
= T I irytxdx,

which is (III).

THEOREM oisr THE CENTER OF MASS. Results analogous to

those of Art. 4 are readily derived for solids ; namely,

The moment of mass of a solid with respect to any plane equals

the product of the mass by the distance from the plane to the center

of gravity. The center of gravity is a fixed point relative to the solid.

This proof is left to the reader.

PROBLEMS

1. Find the center of gravity of the first octant of the homogeneous ellipsoid

x2 w2 z2 i

~a?
+

b*
+

tf
= jlna. x=ia,=f &, * = f e.

2. Find the center of gravity of the homogeneous solid bounded by the surface

z* = xy, and the planes x = a, y = 6, z = 0. - = - = * z =

3. Find the center of gravity of the paraboloid of revolution formed by revolv-

ing about the x-axis the parabola y'
2 = 4 ax from x = to x = b, supposing the den-

sity to vary as x2. Ans. x \ b.
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4. Find the center of gravity of a hemisphere whose density varies as a;
2

,
as-

suming the base in the I
7
Z-plane and the origin at the center of the base.

Ans. x = a.

5. Find the center of gravity of the cone formed by revolving the line hy = ax

around the x-axis between x = and x = A, assuming the density varies as xn .

Ans. x=^^ h .

n + 4

6. Find the center of gravity of the homogeneous solid bounded by the surfaces

x2 + y
2 = 4 z, & + y

z = 3 x and z = 0.

7. The axes'of two cylinders each of radius a intersect perpendicularly. Find

the center of gravity of the solid included by the two cylinders and a plane through
their axes. Ans. f a from the plane.

8. A thin plate whose density varies as (A
2 X2)~* is bounded by the lines

y = ax, y = 0, and x = a. Find its center of gravity. Ans. x= \ irh
; y = % irah.

9. Find the center of gravity of the first quadrant of a circular plate whose

density varies as xy. Ans. x = y = -f5 a.

10. Find the center of gravity of a circular sector (angle = 2 0, radius = a) if

the density varies as the distance from the center. 3 a sin
^ins. x .

4 e

11. Find the center of gravity of a circular sector in which the density varies

as the nth power of the distance from the center.

n + 2 ac
Ans. Q T wnere a is the radius of the circle, I the length of the arc, and

iti ~t~ O If

c the length of the chord of the sector.

12. Find the center of gravity of a circle in which the density at any point

varies as the nth power of the distance from a given point on the circumference.

Ans. It is on the diameter passing through the given point at a distance from

2 (n + 2)
this point equal to . a, a being the radius.

71 ~T" ^t

13. Find the center of gravity of a quadrant of an ellipse in which the density

at any point varies as the distance of the point from the major axis.

Ans.
x=|a,y=-~6.

8. Principle of combination. Since the moment of area or of

mass is a definite integral, if an area or solid

is divided into two parts, the moment of the

whole equals the sum of the moments of

the separate parts. Thus consider the ac-

companying figure, in which (xv lj^) is the

center of gravity of the area Av and (ic2 , y2)

the center of gravity of the area A
2

. Tak-

ing moments with respect to

OX: total momeni ^= Ay = A 1 y 1 + A
2 y2 ;

OY: total moment = Ax = A
1
x

1 + A% Xy.
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Hence the center of gravity of the combined areas is

=-._y Ai + A2

These formulas agree with those for the point of division in

formula 50, Chapter XIV, if X =-j
? . Hence this

THEOREM. The center of gravity of a plane figure composed of
two parts divides the line joining the centers of gravity of the parts
in the inverse ratio of the areas of the parts.

A'similar theorem holds for solids.

The discussion holds for an area (or solid) resulting when a

portion of the area (or solid) is removed, if its area or mass be

taken negatively. The proof, which is left to the reader, comes

from (VII) by transposition. In working problems under this

head, the line joining the centers of the parts may conveniently
be taken for one axis of coordinates.

ILLUSTRATIVE EXAMPLE. To find the center of gravity of the remainder of a

circle of radius 2 r after a circle of radius r has been removed as indicated in the

figure.

Solution. Let c be the center of gravity sought,

and denote the area of the large circle by A2 and

that of the small circle by AI. Then we have

Substituting in (VII),

-_ irr2 -r + 4?rr2 -0_ r

3,rr2 ~3'

Evidently y is zero by symmetry. Hence the center of gravity c lies on the a>axis

at a distance of i r to the left of the origin. Also c divides the line c^ in the ratio

PROBLEMS

1. A rod of uniform thickness is made up of equal lengths of three substances,

the densities of which taken in order are in the proportion of 1, 2, and 3; find the

position of the center of mass of the rod.

Ans. At ^ of the whole length from the end of the densest part.

2. If five ninths be cut away from a triangle by a line parallel to the base,

show that the center of gravity of the remaining area divides the median in the

ratio 4 : 5.
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3. One corner of a square plate of side a is cut off by a line joining the middle

points of two adjacent sides. Find the center of gravity of the remainder.

Ans. from the center.
21

4. An equilateral triangle is formed on one side of a square. Find the center

of gravity of the whole area.
Ans. from base of triangle.

8 + 2 \/3

5. One corner of a square of side 2 a is cut off by a line drawn from a corner

to the middle point of an opposite side. The opposite corner is also cut off by

removing a circle of radius p having its center at the corner. Find the center of

gravity of the remainder.

6. Find the centers of gravity of the shaded portions of the following figures.

3a

7. A cylinder is 12 in. long, and for 8 in. of its length has a diameter of 4 in.;

for the remaining 4 in. it has a diameter of 3 in. Find the center of gravity.

Ans. 5 in. from thick end.
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8. A cone having the same base and vertex is cut from the paraboloid of revo-

lution whose generating curve is y'
2 = 4 ax between x = and x b. Find the

center of gravity -of the remaining solid. -
ftAHS. x .

2

9. From a sphere of radius B is removed a sphere of radius r, the distance

between their centers being c. Find the center of gravity of the remainder.

Ans. It is on the line joining their centers and at a distance from the
7?3 A3

center.

10. Find the center of gravity of a cubical box without a lid, the inside edge

being 20 in. and the thickness of the wood 1 in.

11. Find the center of gravity of the remainder of an equilateral triangle from

which has been cut an isosceles right triangle with hypotenuse coincident with a

side of the original triangle.

12. A right circular cone whose base is of radius r is divided into two equal

parts by a plane through the axis. Prove that the distance of the center of gravity
v

of either half from the axis is -
7T

13. Find the center of gravity of half of a regular hexagon.

14. From a hemisphere is cut a cone having the same base and altitude. Find

the center of gravity of the remainder. Ans. Distance from base = | altitude.

15. From a right circular cylinder is cut a cone having the same base and

altitude. Find the center of gravity of the remainder.

Ans. Distance from base = f altitude.

16. From a right circular cone of altitude a is cut a similar cone of altitude 6,

the bases of the two cones being in the same plane. Find the center of gravity of

the remainder. ^s mstauce from base = 1
4 -

.

4 a3 63

9. Center of gravity of an arc. The center of gravity for any

plane curve is given by formulas analogous to (II), Art. 2, ob-

tained by replacing the element of area or mass by the element of

arc of the curve, that is, for a plane curve, by 66, Chapter XIV,

The formulas are

(viii)
yd8

l
arc ' arc

in which ds is found by (1). In these x and y
are the coordinates of any point on the curve.

Formulas (VIII) are used to find the center of gravity of uni-

form thin wires. If cr is the area of the cross section, and As the



18 THEOEETICAL MECHANICS

length of a piece whose projections on OX and OY are A# and

Ay, respectively, then for the mass of this piece we write

il

= crAs times the density (= r) ;

(1) or Am = T o-As.

For the moments of mass with respect to

OX and OY of this piece, we have the

products
&m and

respectively. Thus we obtain for a plane-curve wire as in

formulas (II),

rxdsI r

(2)

since the constant, <r, divides out. If the wire is uniform, T is

also constant, divides out, and we have (VIII).

ILLUSTRATIVE EXAMPLE. Find the center of gravity of a quadrant of the

.222
hypocycloid X s + y* = a*.

Solution. Consider the part of the curve in the first

quadrant.

Then

X

fds = f Jl + l^Y dx = ^a. 'Hence, applying (VIII), x = y = - a
J JQ * \dx 2 o

10. Theorems of Pappus. Consider any area in the JTF-plane.
The distance of the center of gravity from the rr-axis is given

by the formula (II),

/ / ydydx
y-
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where A denotes the area. Let the area be revolved about the

z-axis. The volume generated is given by the definite integral

(2) V TT I y*dx.

Consider the numerator in (1). Integrat-

ing with respect to y,

(3) rfydyd*
=
l
r "

J J ^<

comparing with (2).

Substituting in the second member of (1), we get

(O y = - - + A, or 2 try = -.
7T A.

Now 2 iry
= length of path described by the center of gravity.

Hence the

FIRST THEOREM. If any plane area be revolved about an ex-

terior axis in its plane, the length of the path described by its center

of gravity is equal to the volume generated, divided by the area

revolved.

This theorem has two uses: (1) if the area and its center of

gravity are known, we may find the vol-

ume of the solid of revolution; (2) if the

area and volume are known, we may find

_-. the center of gravity. For example, to

find the distance of the center of gravity
of a semicircle from the center, we have

volume of sphere _ ^ Tra3 . _ 4 a
& oomi 01 Tf>l o rrrrt** ** Q rr^semicircle

^

Next consider any curve in the XY-
plane. The distance of the center of

gravity from the z-axis is given by the

formula (VIII),

37T

(5) y =

where s denotes the length of the curve. Let the curve be re-

volved about the z-axis. The surface generated is (68, Chap. XIV)

S=-2-rr Cyds.
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But the length of the path described by the center of arc is

(multiplying both members of (5) by 2 TT)

27T I yds
27r =-=

Hence the

SECOND THEOREM. If any plane curve be revolved about an ex-

terior axis in its plane, the length of the path described by its center

of gravity is equal to the surface of the solid generated, divided by the

length of the arc revolved.

This theorem has two uses: (1) if

the length of the arc and its center are

known, we may find the surface of the

solid of revolution; (2) if the length of

the arc and the surface of the solid are

known, we may find the center of gravity of the arc.

For example, to find the distance of the center of gravity of a

semicircle from the center, we have

- surface of sphere 4 Tra2 , - 2
2 try = *- =

, whence y = a.
sernicircumference Tra TT

PROBLEMS

1. Find the center of gravity of an arc of the circle p = a between and -f 6,

and from this derive the results for quadrantal and semicircular arcs.

Ans. x = a sm 6
- For quadrantal arc 6 = -, x = -^_.

4 IT V2

For semicircular arc =
, x =

2. IT

2. Find the center of gravity of a thin straight wire of length a whose density

varies as the rath power of the distance from one end. . - _ n + 1

~n+2
3. Find the center of gravity of the perimeter of the cardioid />

= (!+ cos 8).

Ans. x = | a, y = 0.

4. Find the center of gravity of the cycloid x = a arc vers (2 ay y
2
)^

between two successive cusps. Hint. Ans. x = air, y = .

dy V2 ay y-

5. Find by the theorem of Pappus the center of gravity of one fourth of a circle

in the first quadrant. . - _- _4n
ns. x-y -

g ^.
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6. Find by the theorems of Pappus the volume and surface of the torus gener-

ated by revolving the circle (x 6)
2 + ?/

2 = a2
(b > a) about the .y-axis.

7. The ellipse ^ + ^- = 1 is revolved about the line x = 2 a. Find by the

theorem of Pappus the volume generated. .4ns. 4 ?r2a26.

8. An equilateral triangle revolves around its base, whose length is a. Find

(1) the area of the surface and (2) the volume of the solid generated.

Ans. (1) ; (2) *.
4

9. A square of side a is revolved around an axis in its plane, the perpendicular

distance of which from the center is c. Find (1) the area of the surface and (2) the

volume of the solid generated.

10. A rectangle is revolved around an axis, which lies in its plane and is per-

pendicular to a diagonal at its extremity. Find the area of the surface and the

volume of the solid generated.

11. Moment of inertia. Plane areas. Consider an element of

area
A A

at the point (z, y~). The products,

O
are called the moments of inertia or second

moments of AA with respect to the axes OY and OX respec-

tively. The definition is extended to a finite area by summation

and passing to the limit. Using 1^ Iy for the moments of inertia

with respect to X and Y, respectively, then

(IX)

J, =
j*JV

Iy
= f f = f (

limit
Ax = O

limit
Ao5 = O

In these formulas x and y are the coordinates of any point within

the area. Formulas (IX) are embraced in the single formula

(1) I

where r is the distance from the axis in question to any point

within the area. This integral is called also the second moment

of area, from the second power of the distance r.
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Since each element y^kxb.y or o^Aa;A?/ is essentially posi-

tive, the moment of inertia * is never zero, but a positive

number.

Its dimensions are area times square of a

length, and hence it is of the fourth degree
in the fundamental unit of length.

ILLUSTRATIVE EXAMPLE. Find Iy for the portion
of y

2 = 2 px cut off by x h.

Jl I"*"**^ Solution. We have, by (IX),

c c < r*r c^2*"* ~\

j.y
i ix dxciy 1

I ay \ x o/x
J J Jo LJ-V2^ J

Since A = f \/2 ph?, we get for Iy the expression

PROBLEMS

Note. If the equation of the curve is given in polar coordinates (p, 0), write

in (IX)
dA = pdpdd, x = p cos 0, y = P sin 0.

1. Find /for a rectangle of sides 2 a and 2 b : (1) with respect to an axis through
the center of gravity parallel to the side 2 a

; (2) with respect to the side 2 a.

Ans. (1) ; (2)
- Ab2

.^ '
3 3

2. Find /for a circle with respect to a diameter. Ans. \ Aa2
.

3. Find / for an ellipse : (1) with respect to its major axis
; (2) with respect

to its minor axis. Ans. (1) J Ab2
; (2) \ Ad2

.

4. Find / for a right triangle with respect to one side.

5. Find / for a square with respect to a diagonal. Ans. ^ Aa2
.

6. Find / for an equilateral triangle with respect to a median.

7. Find Ix for the cardioid p = a(l + cos 0).

8. Find Ix and Iy for one loop of the curve p a cos 2 6.

9. Find / for the lemniscate p
2 = a2 cos 2 0. Ans. Iy = (3 w + 8) a

2
.

12. Theorems on moments of inertia. The moment of inertia

of the element of area AA =AzA;z/ with re- y
spect to any line or axis L equals

where r is the distance from the line L to

the point (x, y). The moment of inertia of

a finite area with respect to L is then

* It appears later that moment of inertia determines the kinetic energy of revolution.
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(X) IL = \ \ r*dA = \ (r^dxdy,

in which r is the perpendicular distance from the line L to any
point (#, /) within the area.

Let us apply (X) to the case of an axis parallel to OX, whose

equation is y = a. Then r = y a, and hence

2 - 2 ay + d

= C ffdA - 2 a f CydA + a2 C CdA.

(1) .-. IL =Ic -2aM,+a*A(by (IX)
Art. 11, and (II) Art. 2).

This formula expresses the moment of in-

ertia IL in terms of the moment of inertia

with respect to any parallel axis OX, the

moment of area with respect to the latter,

and the area itself.

But suppose the center of gravity lies on OX. Then y =
and also Mx = 0. Hence

(XI) IL = Ix +a*A.

An axis passing through the center of gravity is called a grav-

ity axis.

This establishes the important

THEOREM. The moment of inertia of a plane area with rezpect

to any axis equals the moment of inertia with respect to the parallel

gravity axis, increased by the product of the area by the square of the

distance between the axes.

This statement shows that the moment of inertia with respect
to a gravity axis is less than the moment of inertia for any parallel

axis.

Radius of gyration. The quotient of the moment of inertia by
the area is the square of a length called the radius of gyration.

Thus, if rL denote this,

in which rL is the radius of gyration with respect to the axis L.
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PROBLEMS

1. Find the radius of gyration in the problems on page 22.

2. Find / and r for a circle with respect to a tangent. Ans. I = f Aa2
, f

2=% a2.

3. Find /and r for an ellipse with respect to a tangent (1) at the end of the

major axis ; (2) at the end of the minor axis. Ans. (1) /= f Aa2
; (2) I \ Ab'2 .

4. Find /for a right triangle with respect to a line through one vertex parallel

to the opposite side.

5. Find /for a square with respect to a line through one vertex parallel to the

diagonal joining the other two vertices.

6. Find / for an equilateral triangle with respect to a line through one vertex

parallel to a median.

13. Further theorems. In the preceding section, the axis L
was drawn in the plane of the given area. It is necessary, however,

to consider moments of inertia with re-

spect to axes without, but parallel to this

plane. Let L be such an axis in the fig-

ure. Then if r is the perpendicular dis-

tance from the axis L to any point (x, y~)

within the area, we define in a manner

precisely analogous to the foregoing,

= C Cr*dA = f fadxdy.

Now project the line L upon the plane of the area, and take this

projection as the axis OX. Let the distance between L and

OX equal a. Then evidently r2 = a2 + y
z
, and hence

= f/V
(XII)

The moment of inertia of an area with respect to an axis

parallel to its plane equals the moment of inertia with respect to the

projection of the given axis on its plane increased by the product of

the area by the square of the distancefrom the axis to the plane.

14. Polar moment of inertia. The moment of inertia of an

area with respect to the origin is defined as equal to

(XIII) J
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y\

It will be observed that (x
z + #

2
) &.A is the product of AA by

the square of the distance from (x, y~) to an axis through 0, per-

pendicular to the plane of the area. y
Such an axis is called a polar axis.

Comparison with (IX), Art. 11, enables

us to write (XIII) in the form

(XIV) I = Ix + Iy.

Hence the O

THEOREM. The moment of inertia of an area with respect to a

polar axis (called the polar moment) equals the sum of the moments

with respect to two mutually perpendicular axes

drawn through its foot.

If polar coordinates (/o, 0) are used, the

origin being the pole, IQ, the polar moment of

inertia, is given directly by

(XV) Jo - =
j*j

Moments of inertia of a circle. On account of important appli-

cations in the next section, the moments of inertia of a circle are

now worked out.

Let a = radius. Then, by (XV), the

polar moment of inertia with respect to

an axis through the center is

where A = area of the circle.

Also since Ix = Iy , by symmetry, we have, by (XIV),

C\ J -J a2A*-
2
^o- 4

In words: the polar moment of inertia of a circle with respect to

its center equals the product of one half the area and the square of

the radius ; with respect to any diameter the product of one fourth
the area and the square of the radius.

15. Flat thin plates or laminae. Moments of inertia of

laminae are obtained from the corresponding moments of inertia of

their surfaces by replacing the area by the mass of the lamina.
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For example, the polar moment of inertia of a circular lamina with

respect to its center equals the product of one half the mass by the

square of its radius.

D

D

The moment of inertia of a circular lamina with respect to a

diameter equals the product of one fourth its mass by the square of
the radius.

16. Solids of revolution. Moments of inertia of such solids

are obtained by slicing and trimming the solid into circular laminae

y-foa
by a series of equidistant

planes perpendicular to the

axis of the surface, and con-

sidering the limit of the

sum of the moments of

inertia of the laminae. If

the axis of revolution be

chosen as OX, the common
thickness of the laminae as A x, and the density as T, the mass A w
of any lamina is

(1) A m = T?n/
2 A x.

Moment of inertia of a solid of revolution with respect to the axis

of revolution. The moment of inertia of any one lamina with

respect to the axis of revolution is the same

as the polar moment of a circular lamina

with respect to its center. By Art. 15,

this moment is equal to

(2) Am .7

The moment of inertia of the solid is accordingly

(XVI) =
ijVdm=j*yjr*to,

in which y is to be found in terms of x from the equation of the

generating curve.



MOMENTS OF MASS AND INERTIA 27

ILLUSTRATIVE EXAMPLE. Find the moment of inertia with respect to the axis

of revolution of a cone formed by revolving about the x-axis the line y = mx between

x = and x = b.

Solution. From (XVI),
T _- .

'*

**T lo 10

Since the radius of the base a = mb and the volume =-

= T% Ma2
.

PROBLEMS

we have

1. Find I for a rectangle of sides 2 a and 2 b with respect to a line perpendicular

to the plane and passing through the center. . T ( 2

o

2. Find /for a right triangle with respect to a line perpendicular to its plane
and passing through the vertex of the right angle.

Ans. $ Ac2
,
where c is the hypotenuse.

3. Find / for the area of an ellipse with respect to an axis perpendicular to

the area and passing through the center. Ans. /= J A(a2 + b2).

4. Find /and r for a sphere with respect to a diameter. Ans. /= f Ma2
.

5. Find Ix and rx for an ellipsoid of revolution about the x-axis.

Ans. /= f Mb2
.

G. Find / and r for a right cylinder with respect to its axis.

Ans. 1= $ Ma2
.

7. Find Ix for the solids of revolution about the x-axis whose generating
curves are

(a ) y
i = ax fr0m x = to x = b;

(b) y =sinx " x = " x = v;

(c) y = mx + b
" x = " x = c

;

(d) y = ex " x = " x = a.

Moment of inertia of a solid of revolution with respect to an axis

cutting the axis of revolution at right angles. We wish to find the

moment of inertia with respect to OY.

To do this, we must first find the moment
of inertia of one lamina with respect

to OY. Now OY is an axis parallel to

the surface of the lamina. Let DD' be

the projection of OY upon this surface.

Then, by (XII), Art. 13, for the lamina

we have

\&) -*-y (for one lamina)
==

-*-D
~

But ID is the moment of inertia of the lamina with respect to

a diameter. Hence, by Art. 15,

x.v T Am 2
(4) ID=-y2

'.

D

D'
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Substituting in (3) gives

(5) (for one lamina)
==

4

Summation and passing to the limit leads to the result

Civ 2 \ Civ*
(XVII) Iy (for the solid)

= I ( ~T- + a?2

J
dm = T I ( +

in which y must be expressed in terms of x from the equation of

the generating curve.

PROBLEMS

1. Find the moment of inertia of a right cylinder of radius a and altitude h

with respect to a diameter of the base. . TM,g 2 i 4 j,2\

2. Find the moment of inertia of a right circular cone of altitude h and radius

of base a, with respect to an axis through its vertex and perpendicular to its geo-

metrical axis. Ans. I = 2%M (4 A
2 + a2

).

3. Find the moment of inertia of the cone of problem 2 with respect to a

gravity axis perpendicular to its geometrical axis. Ans. I = -^M (ft
2 + 4 a2

).

4. Find Iy for the solids of problem 7, p. 27.

17. Moments of inertia of solids in general. Consider any
solid and an interior point (#, #, z). If the density at this point
is T (#, y, z) (compare Art. 7), the element of mass is

(1) Am = rA^AyAz.

The moments of inertia of Am relative to the coordinate planes
are defined as

The square of the distance of (x, y, z) from the axis of x being

y
z + z2 (with similar expressions for the other axes), the moments

of inertia of Am with respect to the coordinate axes are

The moments of inertia for the entire solid may now be written

down, namely,
limit

(XVIII)

[
I** =

J ( ( y2dm, Ixy
= ( i \z-dm

;

Iz =
j*JJ(ic

2 + 2/
2)dm,
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where dm = T(X, y, z) dxdydz, and (#, y, z) is any point within

the solid.

Formulas (XVIII) and (XIX) are included in the formula

=///'
where r is the perpendicular distance from the axis or plane in

question to any point within the solid.

Dimensions. The moment of inertia of a solid has been defined

as the product of mass by the square of the distance. Hence the

derived unit of moment of inertia is expressed in terms of the

fundamental units of mass and of distance by the dimensional

equation
Moment of inertia = mass x length

2
.

By the radius of gyration of a solid with respect to any axis is

understood a length rt whose square is the quotient of the moment
of inertia with respect to the axis by the mass. Thus

(3a) r* = ^-, etc.
mass

The relations

(4) J-x
=

-LZX+ J-xyi -*f
=

-*-yz + J-^yi J-z J-yz + *zxfi

obviously hold. In words,

The moment of inertia of a solid with respect to any axis equals

the sum of its moments relative to two mutually perpendicular planes

passing through the axis.

Homogeneous solids. For such solids the density T is every-

where constant. Formulas (XIX) applied in this case to a homo-

geneous solid of revolution about the #-axis work out as follows:

[*[*[* c\ c r i

(5) JC=T I I I (y
2 + z^dxdydz = T I I I (y* + ^dydz \dx.

t/ t/ e/ t/ Lt/ */ J
a-= constant

^ut
/ / (y

2 + z^dydz calculated for any plane section x =

constant is obviously the polar moment of a circle with respect to

its center. Since the radius of this circle is y, then (Art. 14)

_ 7r#
2

.a _ *.
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(7) .-.I

which is (XVI), Art. 16.

Similarly for the same solid,

(8) I
y
=rfC f(

= T I / I dydz u?dz + r I I I z^dydz \dx.

x= constant x= constant

But / / dydz calculated for any plane section when x = con-

stant, is the area of that section; that is,

(9)
/* / x= constant

Again, I I z^dydz for the section a; = constant is the moment of

inertia of that section with respect to its diameter in the plane
XY. Hence (Art. 14),

+ r - dx
;

(10)

Substituting in (8) gives

(11) /,
=

that is, (XVII).

18. Parallel axes. If E is any plane, the moment of inertia of

any solid with respect to E. is denned as

M
where r is the perpendicular distance from

the plane to any point (x, y, 2) within the

solid.

Parallel planes. Let E and E' be

two parallel planes, r and r' the dis-

tance from them to any interior point

Or, y, 2) of a solid. Then if a is the

common distance apart of E and E',

we have
r = r' + , and hence
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= C C Cv*dm= C C

dm.

But T f / f f /An =

and / / / r'dm = Mr, where r is the distance of the center of

gravity of the solid from E' . Hence

(1) IE = IE>+2 aMr + a*M.

Suppose E' passes through the center of mass. Then r = 0, and

we have the important result

(2) IE =IE>+a*M.
Any plane passing through the center of a mass is called a grav-

ity plane.

THEOREM. The moment of inertia with respect to any plane is

equal to the moment of inertia with respect to the parallel gravity

plane, increased by the product of the entire mass and the square of

the distance between the planes.

Since in any set of parallel planes one and only one passes

through the center of the mass, it follows at once from (2) that

of all moments of inertia with respect to parallel planes that with

respect to the gravity plane is the least.

Parallel axes. LetL and L' be any two parallel lines. Let E"
be the plane passed through the two lines L and L 1

',
and let E and

E' be planes through L and L', respectively,

perpendicular to E". Then, from (1),

IE = IE > + 2 aMr + a?M.

Adding IE" to both members, we have

(3) IE + IE i, = IE i + IEn + 2aMf

But, by (4), Art. 17,

IE + IE' = IL and IE i + IE" = //.

Also if L' (and consequently E'} passes through the center of

mass, we have r = 0, and (3) becomes

(4) IL = IL '
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Hence the theorem stated above holds when the word "
plane

"
is

replaced by "axis."

PROBLEMS

1. Derive formulas for the moments of inertia of plane arcs (or wires).

Ans. Ix = (ry'
2
ds; Iy = frx^ds; ds = (dx* + dyrf-

2. Find 7 for a solid cylinder with respect to an element. Ans. f Ma?.

3. Find / for a solid sphere with respect to a tangent line. Ans. - Ma2
.

4. Find I for a solid ellipsoid of semiaxes a, 6, c with respect to the axis a
;

with respect to a tangent line at the extremity of the axis b.

Ans. M**; M6-**.
5 5

5. Find /for a uniform wire in the form of an equilateral triangle of side a,

(1) with respect to a line perpendicular to the plane of the triangle and equidistant
from the vertices

; (2) with respect to a line through a vertex perpendicular to the

plane. Ang (1)
Jftf

3

6. Find 7 for a solid cylinder with respect to a line perpendicular to its axis and

intersecting it at a distance c from the end, the altitude of the cylinder being h and

the radius of the base c. Ans. J Jfc 2 + M(h'2 3 he + 3 c2).

7. Find 7 for a straight rod of length a with respect to an axis perpendicular
to the rod and at a distance d from its middle point. .

-^-tJ'
2
\

8. Find 7 for an arc of a circle whose radius is a and which subtends an angle
2 a at the center, (1) with respect to an axis through its center perpendicular to its

plane ; (2) with respect to an axis through its middle point perpendicular to its plane ;

(3) with respect to the diameter which bisects the arc.

Ans. Ma*;22M(l a*; (3) M
(l

- S
-

9. Find 7 for the arc of the cycloid x = a (6 sin 0), y = a (1 cos 0} with

respect to the base. Ans. f Ma2
.

19. Relation between moment of inertia of a beam and polar

moment of a right section. Consider any homogeneous straight
beam (density = r) whose elements are par-
allel to OZ. Then, by (XIX),

(1) I. = r f
(*(*

2= constant

/
2
) dxdy, worked out for any section z = constant,
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is the polar moment of that section for the axis OZ (Art. 14).
Hence (1) becomes

(2) Iz (for the beam)
=

^Q (for a right section)
X height of Cylinder (= A) X T.

Let rt and r be the radii of gyration of beam and right sec-

tion, respectively. Then

?
, r 2 =

mass area

T _ 7lfr 2 r _ r 2 J
-*z J**Tt , J r XL.

Substituting in (2) gives

(3) Mr? = Ar^hr.

But M= Ahr, and hence

(4) r.
= r .

THEOREM. The radius ofgyration of any homogeneous beam with

respect to an axis parallel to its elements equals the radius ofgyration

of a right section with respect to the same axis.

From (4) we may write

Iz= Mr?, J =^2
,

and hence the change from I
Q
to Iz is accomplished by replacing

the area by the mass of the cylinder. In this form the result is

useful and gives this

RULE. To find the moment of inertia of a straight beam or

column with respect to an axis parallel to its elements (or edges),
work out the corresponding polar moment for any right section

and replace in this result the area by the mass of the beam or

column.

20. Combined solids and areas. Since the moment of inertia is

a definite integral, it follows that if a solid or area is composed of

two or more parts, the moment of inertia of the whole with respect

to any plane or axis is equal to the sum of the moments of inertia

of its parts with respect to that plane or axis. Also, if a portion
be removed from a solid or area, the moment of inertia of the

remainder equals the moment of inertia of the whole minus the

moment of inertia of the part removed.

As an example, consider the polar moment of inertia with

respect to its center of the circular ring formed by removing from



34 THEORETICAL MECHANICS

a circle c of radius 72, a concentric circle c' of radius r. Denoting
the area of c by J., and that of c' by A', the polar moment of inertia

of c by J , and that of c' by J ', we have

AR2
T I

* = A'r*

Hence the polar moment of inertia of the re-

maining ring is

1=

The area of the ring A is

A = TrlP - 7TT2 .

Hence

That is, the polar moment of inertia with respect to its center

of a circular ring lying between two concentric circles of radii R
and r is equal to one half the product of its area by the sum of

the squares of the radii.

By the principle of Art. 19, we may at once extend this result

to apply to a hollow circular column of outer radius R and inner

radius r. Denoting by I the moment of inertia of the column

with respect to its axis, we have

THEOREM. The moment of inertia of a homogeneous hollow cir-

cular column with respect to its axis is equal to one half the product

of its mass by the sum of the squares of the inner and outer radii.

21. Routh's rules. The following moments of inertia occur

frequently and should be committed to memory:
The moment of inertia of

(1) a rectangle whose sides are 2 a and 2 b with

respect to an axis through its center in its plane

perpendicular to the side 2 a

with respect to an axis through its center per- i _ ,,

pendicular to its plane
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(2) an ellipse of semiaxes a and b with respect j _ ,
/
-62

to the major axis (a) 4
'

a2

with respect to the minor axis (6) = M ;

(a circle is an ellipse with semiaxes each equal to a)

(3) an ellipsoid of semiaxes a, 6, c, with respect 1 _ ^ 52 + c2

to the axis (a) 5

(a sphere is an ellipsoid with a = b = c~)

(4) a parallelepiped whose edges are 2 a, 2 5, 2 <?, TO i *>

with respect to an axis through its center perpen- \ =M
dicular to the plane containing the sides b and c

(5) a circular cone the radius of whose base is a
} 3
r
==

with respect to its axis 10

As an aid to the memory, the first four rules may be combined

into one known as Routh's rule:

/Sum of squares of perA

_ TIT , x \penclicular semiaxes J
Moment of inertia

with respect to an ----------
, 3, 4, or 5

axis of symmetry

The denominator is to be 3, 4, or 5, according as the body is

rectangular, elliptical, or ellipsoidal.

As an example of the application of Routh's rule, suppose it is

required to find the moment of inertia of a circle of radius a with

respect to a diameter. We notice that the perpendicular semi-

axis in its plane is a and the semiaxis perpendicular to its plane
a2

is zero. Hence the moment of inertia is M . Again, let it be

required to find the moment of inertia with respect to a line

through the center of the circle and perpendicular to its plane.

The perpendicular semiaxes are each equal to a and the moment
of inertia is

4 2*

PROBLEMS

1. Find the moment of inertia of the hollow column of Art. 20 with respect to

a line perpendicular to the JTF-plane, (1) through the outer circumference;

(2) through the inner circumference. Ang ^ M ^ R2 +^ .
M

2 2
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2. Find the moment of inertia of the circular ring, Art. 20, relative to OX.

Ans. ^(.
4

3. Find the moment of inertia of the ring with respect to the tangents to the

circles c and c'.

4. Find the moment of inertia of a circular area having a smaller circular area

cut from it as in the figure, (1) with respect to a line through perpendicular to

the plane of the circle
; (2) with respect to a diameter of the larger circle perpen-

dicular to 00'; (3) with respect to a line through 0' perpendicular to the plane of

the circle
; (4) with respect to the diameter 00'.

Ans. (1) tfMW; (2) ft MS?; (3) ff ME2
;

(4) #M&.
5. A square is removed from a circle, the diag-

onals of the square intersecting at the center of the

circle. Find / with respect to (1) an axis passing

through the center of the circle perpendicular to its

plane ; (2) an axis perpendicular to the plane and

passing through one corner of the square ; (3) a diam-

eter which is also a diagonal of the square.

6. Find the moment of inertia with respect to the gravity axis parallel to an

edge of the beams whose cross sections are shown in the following figures.

22. System of material particles. By a material particle, or

simply particle, is meant a portion of matter of so small a volume

that the volume is regarded as reduced to a point. In other

words, it is a weighted point or point mass. The moment of mass

of a particle of mass m at the point P with respect to any line or

plane equals the product of m by the perpendicular distance to P
from the line or plane.
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The center of mass of any system of particles of mass m
l

at
y
i(.
xv Vv> 2

i)'
m

z
at PV&V Vv z

%)->
etc - ^ defined by the equations

m.
2 + 2m '

(1)

z =
m

Similarly, the moment of inertia of a particle of mass m at P
with respect to any axis equals the product of m by the square of

the perpendicular distance from P to the axis.

Thus for a system of particles lying in one plane whose masses

are m
l
at PI(X^ y^), w2

at -P
2(% #2)' etc -' we have

PROBLEMS

1. Three edges of a unit cubical frame without weight are taken as the coordi-

nate axes, and particles are placed at all the corners except at the origin. Find /
with respect to each face, edge, and vertex of the cube, (1) when the particles are

of equal mass
; (2) when the masses vary as the squares of their distances from the

origin.

2. A straight rod of negligible mass and length a has five particles of equal mass

situated on it at equal intervals of \a. Find /and r 2
, (1) with respect to one end;

(2) with respect to the middle point ; (3) find / when the masses increase in arith-

metical progression from the end.

3. Given three particles of equal mass, situated at the vertices of an equilateral

triangle. Find (1) /and r 2 with respect to one side; (2) with respect to a line

parallel to one side passing through the opposite vertex.

4. A regular hexagon has particles at middle points of five of its sides. The
masses of the particles taken in order are as 1, 2, 3, 4, 5. Find / and r<>

2 with

respect to the unweighted side. ^ns. /= 20.25 a2
;
r 2 = 1.35 a2.

23. Ellipse of inertia. This section is concerned with the solu-

tion of the problem,

To determine the moment of inertia of an area with respect to any

gravity axis. Let be the center of mass of a given area ;
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OY any two mutually perpendicular axes through it, and I

any other gravity axis making with OX the angle 6. Then, by
Art. 11, (1),

/q\ T I I i3-^ A

*"JJ
where r. is the perpendicular distance

from I to any interior point (#, #) of

the area. The equation of I may be

written

(2) x sin 6 + y cos = 0,

and hence (56, Chapter XIV) we have

(3) r = x sin 6 + y cos #,

when (#, y) is the interior point in question. Substituting in (1),

(4) J, = i
|(
- z sin + y cos 0)

2 cM, or,

J, = sin2 C C xzdA - 2 sin cos T CxydA + cos2 T A/V.4.

The second integral in the right-hand member has not thus far

been discussed. If we set this equal to P
xtf>

we may write

(5) Ii=Ix cos2 0.-2Pxy sin cos + Iy sin2 0,

where

and is called the product of inertia with respect to the axes

and 037
". It is easy to see that

_Z~,
assumes a maximum and a

minimum value as the axis I rotates about O. In fact, since

(6) = - 2Ix cos e sin 0-2P^(cos
20- sin2

(9)+2Jtf
sin0cos0,

a0

setting the right-hand member equal to zero gives

(7) (Jy -/,)sin2^
9 p

from which tan 2 6 = - &-.

*-y *g

The values of 6 determined by this equation will give axes ?
t
and

12 for which /, is a maximum and a minimum respectively. More-
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over, since these values of 6 differ by , l^
and 12 are perpendic-

JU

ular. They are called the principal axes of inertia.

Obviously, if Pxy 0, the roots of (7) are 6 = 0, =
, and

hence OX and Y are already the principal axes. Let us now
assume this to be the case. Then (5) becomes

(8) I
{
= Ix cos2 + I

y
sin2 6.

Introducing the radii of gyration by setting

then (8) becomes

(XXI) r? = rj? cos2
9 + ry* sin2

9.

This equation gives the radius of gyration with respect to any
axis in terms of the principal radii of gyration, rx and r

y
. For

convenience we now write

(9) i

Thus (XXI) becomes

("ic\\ 2 __ cos2 sin2 6

~ar
~

~~P~'

Let us now draw the ellipse,

>*-- >/

(ii) 1= ^+!i-a* o*

If (p, 0) are the polar coordinates of the point P where the axis

I cuts this ellipse, then in (11)

x = p cos 0, y P sin 0i an(i we get

(12)
3
2 cos2

, p
2 sin2 ,

+ tL ^ , or also
62

cos2 sin2

Comparison with (10) gives the result

2_
(13)

The ellipse (11) is called the ellipse of inertia, and the result

indicated by (13) may be stated thus:
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If the ellipse of inertia is drawn for any plane area, the radius

of gyration for any gravity axis equals the reciprocal of the radius

vector of the point in which the axis intersects the ellipse.

The principal axes of inertia are those for which the product
of inertia is zero ; that is,

= I \

It is easy to see that P^ = if either OX or OY is an axis of

symmetry. For example, if OX is such an axis, then in the sum
of the products

the terms will occur in pairs with the same

x and with ^'s differing only in sign. The
terms in each such pair will cancel, and

hence the limit of the sum is also zero. This

consideration gives the result :

Any axis of symmetry is necessarily a

principal axis.

The process, then, of determining the moment of inertia with

respect to any gravity axis is the following :

(1) If the figure has no axis of symmetry, choose any pair of

rectangular axes, calculate Ix and I
y by (IX), and Pxy by (XX).

Then use equation (5), or solve equation (7) for 6 and determine

the principal axes and the principal radii of gyration. Choose

these axes for the new axes of coordinates and draw the ellipse of

inertia (11). Then apply the theorem just stated to find r
l
or

use (XXI).
(2) If the figure has an axis of symmetry, choose this for

OX or OY, calculate rx and r^ and draw

the ellipse of inertia (11) or use (XXI).

ILLUSTRATIVE EXAMPLE. Find the moment of

inertia for any gravity axis of a rectangle.

Solution. Taking OX and T as in the figure,

then

and

/* = AaP l =

r * -** ~3' 3
'

and the equation of the ellipse of inertia is

(1)
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The radius of gyration for any gravity axis is then the reciprocal of the radius

vector of its point of intersection with the ellipse, or also, by (XXI),

rt
= (a

2 cos2 B + b'
2 sin2 6) .

PROBLEMS

1. Show that the ellipse of inertia for any regular polygon is a circle. What is

the conclusion regarding the moment of inertia with respect to any gravity axis ?

2. Find /for a rectangle whose sides are 2 a and 2 b with respect to a diagonal.

Ans. .

3 a2 + fc
2

3. Find / for an isosceles triangle with respect to an axis through its center of

area and inclined at an angle to its axis of symmetry, a being its altitude and 2 b

its base. Ans. $ M( a2 cos2 a + V2 sin2 a) .

4. Find / for an ellipse with respect to a diameter making an angle a with the

major axis.

Ans. I~-M(b2 cos2 a + a2 sin2 a) = -M^-, where r =- diameter.
4 4 r2 2



CHAPTER II

KINEMATICS OF A POINT. RECTILINEAR MOTION

That portion of mechanics which is concerned with the study
of motion is called dynamics. The subject matter of dynamics is

divided into two parts, kinematics and kinetics. Kinematics treats

of pure motion, that is, motion without reference to the mass of

the body which is moving or the forces producing the motion. It

has to do solely with the relations of time and space. Kinetics

treats of motion, including consideration of the mass of the body
moved and the forces acting upon it. This chapter treats of the

kinematics of a point which moves on a straight line.

24. Motion on a straight line. In order to indicate the posi-

tion of a point upon a line, we select on that line a fixed point 0,

called the origin. The position of any point P with respect to

may then be determined by the length OP and its direction from

the origin. For the application of mathematical analysis to the

rectilinear motion of a point, it is necessary to regard the path as a

directed line;* that is, we must assume an origin, a unit of length,

and a direction. If the measure of the length OP be denoted by x,

then it is obvious that x is variable if P is a moving point. The
motion of P is said to be completely determined when the posi-

tion of P is known at every instant of time
; that is, when the

variable a; is a function
j-

of the time t, since the position is

determined by the value of x. Hence for rectilinear motion we
have the relation

(I) x

This equation is called the equation of motion. Its significance
is this, that from it we may find the position of the moving point
at any instant of time.

*
Analytic Geometry, p. 23. t Calculus, p. 12.

42
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In order to indicate instants of time it is necessary to select

some fixed instant from which the time may be reckoned, forward

and backward.

This fixed instant, called the origin of time, is denoted by
t = 0, and time before is indicated by a minus sign, time after by a

plus sign.

The position of the moving point when t = is called the

initial position. The corresponding value of x is called the initial

value of x and is denoted by a: . From (I) we have,

For example, if the equation of motion of a mov-

ing point is x = t? 2 , we find the table of values of

t and x as given. We see, therefore, that the point

&t*2

t
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derivative of x with respect to t. Hence, denoting the velocity at

any instant by v, we have

(II)
- ff-fW-

The value of the velocity at the origin of time is called the initial

velocity, and is denoted by v . From (II), we have

Dimensions. Velocity is defined as the limit of the quotient

of distance Ax by time A. The derived unit of velocity is

therefore expressed in terms of the fundamental units of length
and of time by the dimensional equation

Velocity =
en^

-.

time

If v =
<f>' () is positive for the value t = tv we know that at

the instant t = tv x =
<f> (t) is an increasing function* of t, and the

point is moving towards the right along the directed line OX.
If v is negative, a; is a decreasing function of t, and the point is

moving towards the left. If for t = tv v
1
=

<// (^) = 0, the point
at the instant t = 1

1
is at rest. If the velocity is constant, the

motion is said to be uniform. The numerical value of the velocity

is called the speed.

For example, to discuss the velocity of a point when its

equation of motion is x = t
2 2

, we find, by differentiation,

v = 2 1 2. Giving t successive values, we ob-

tain the values in the table. The point is the

-J
,
123_

cT~ x

initial position, and 2 the initial velocity.

The point is therefore moving in the negative
direction along the line OX with a speed of 2

units of distance per unit of time.f At the in-

stant t = 1 the velocity is zero and the point
is at rest. For values of t greater than 1 the velocity is positive,

and the point moves in the positive direction along OX.

* Calculus, p. 116.

t That is, two feet per second, if the unit of distance is one foot and the unit of time

one second.
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26. Acceleration. If the velocity of a moving point is variable,

the point is said to have acceleration. In mathematical terms,

acceleration is the time-rate of change of velocity. That is,

acceleration at any instant is the derivative of velocity with

respect to the time. Hence, denoting acceleration at any instant

by/, we have

f= dv _d ldx\ _ d?x.~
dt~ dt\dt}~ dV '

or, acceleration is the second derivative of the distance with

respect to the time. When the equation of motion is x = <f>(f),

we obtain, by differentiation,

/-=*">.
The acceleration may be expressed in another form, which is

frequently useful in the solution of problems in mechanics. We
have x = <(), and this may be solved for t, giving

(1) * = tO)-
The velocity is a function of t ; namely, v = <'() When the

value of t from (1) is substituted in this expression for the velocity,

we have v expressed as a function of x.

(2) v = F(x).

This expression determines the velocity when the position is

known. We have, from calculus,*

dv _ dv dx

dt dx dt

Since v = -, therefore, f = v .

dt dx

For convenience, the preceding results may be summarized :

I. Equation of motion, f x = $(t~).

n. Velocity at any instant, v =^ =
<|>' (t).

III. Acceleration at any instant, f=
~dt~ ~d^

~ ^ =v
'dx'

*
p. 57.

t Other letters, e.g. y, s, will be used also to denote the position of the point P.
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The physical meaning of the algebraic sign of the acceleration

is made apparent by the following consideration. If the point P
moves along OX towards the right, the velocity is positive ; if

towards the left, the velocity is negative. The acceleration is

positive if v increases algebraically, and negative if v decreases

algebraically. Hence, if

P moves to the right with increasing speed, v > 0, f > ;

P " " " " "
decreasing

" v > 0, / < ;

P " " "
left

"
increasing

" v < 0, / < ;

P " " " " "
decreasing

" v < 0, / > 0.

If the acceleration is constant, the motion is said to be uni-

formly accelerated. The special case when the acceleration is

zero, and hence the velocity constant, has been already referred to

in Art. 25 as that of uniform motion.

Dimensions. Acceleration is denned as the limit of the quo-
tient of velocity Aw by time At. Its dimensions are therefore

velocity divided by time, or distance divided by the square of the

time. The relation between the derived unit of acceleration and

the fundamental units of length and of time is expressed by the

dimensional equation

Acceleration = ^-z--
time2

Two systems of units are in common use, the English and

French. These are given in the table :

Units English French

distance foot centimeter

time second second

velocity 1 ft. per sec. 1 cm. per sec.

acceleration 1 ft. per sec. in 1 sec. 1 cm. per sec. in 1 sec.

27. Distance-time diagram. Discussion. The preceding dis-

cussion has shown that distance, velocity, and acceleration of a

moving point are functions of the time. The determination of

the variation of these variables with the time constitutes the dis-

cussion of the motion. The graph of the equation of motion is

very useful in making the discussion. Since x is a function of t,
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we may plot the curve represented by the equation x = $ (),
where t is the abscissa and x the ordinate. This curve is called

the distance-time diagram. For a

given instant of time, tv we have

a given value of the abscissa; e.q. ^r-^-^ \ /
S c? ^\J^\ A IOA in the figure. The correspond- -y- =k -

ing value of x is the ordinate AB and ft

the position
* on the path X is Pr

Since the velocity is the derivative of x with respect to t, its

value is given geometrically by the slope of the tangent at B
; that

is, by tan . The numerical value of the acceleration is not given

directly by the figure, but its sign is determined by noticing the

form of the curve. If the curve is concave upwards, the sign of

the acceleration is positive ; if concave downwards, the sign is

negative. f Maximum and minimum points on the graph of the

equation of motion indicate extreme J positions of the point mov-

ing on the straight line ; that is, positions where the velocity
is zero. At such a point the velocity changes sign. With refer-

ence to the moving point P this means that it ceases to move in

one direction and begins to move in the opposite direction. A
maximum point corresponds to an extreme position upwards, since

the first derivative changes from plus to minus. For a maximum

point the second derivative is negative ; hence for an extreme up-
ward position the acceleration is negative. Similarly, a minimum

point corresponds to an extreme downward position and the accel-

eration is positive. A point of inflection on the graph of the equa-
tion of motion indicates that at the corresponding instant of time

the acceleration (which is the second derivative of x with respect
to ) is zero. When the characteristics of the motion have been

ascertained from this discussion, it will be convenient to take the

path along a horizontal line. The properties already known of

the motion on the X-axis are readily interpreted on the horizontal

path.

* The student must be careful not to confuse the distance-time curve with the path
of the point. The path lies on OX, and the position of the point at any instant, tlt is

found by constructing the point B in the diagram whose abscissa equals ti, and then

projecting this point on to the distance axis, as PI in the figure.
t Calculus, Chapter IX.

J The word " extreme " here means relative extreme, just as in geometry the word
"maximum" means relative maximum.
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ILLUSTRATIVE EXAMPLES

1. Discuss and draw the distance-time diagram for the motion defined by

(1) x =<3 -3 2 + 2t.

Solution. By differentiation, we obtain

(2) v = 3 <
2 - 6 1 + 2,

(3) /=6-6.

The extreme positions of the moving point, and consequently the maximum and

minimum points on the graph, are given by the condition,

v = 3 2 6 t + 2 = 0,

whence t \ ,
or approximately

o
.

ti = 0.4, 2 = 1-6.

The corresponding values of x are approximately

For t < 0.4 the velocity is positive.

For 0.4 < t < 1.6 the velocity is negative.

For t > 1.6 the velocity is positive.

The acceleration is zero, and consequently there is

a point of inflection on the graph when t = 1. The cor-

responding value of x is 0. For t< 1 the acceleration is

negative, and since /= ,
the velocity is decreasing

dt

(algebraically). For <> 1, the acceleration is positive and the velocity is in-

creasing. The distance-time diagram may now be drawn. We may summarize

the results obtained in the following table :

t
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x = 0.38 to the right (the acceleration is negative). As t increases from 0.4 to 1.6,

the point moves to the left. When t = 1.6, the velocity is again zero and the point

->38 .33 e Values ofx

is z 0.4
3 Values oft

is at an extreme position x = 0.38 to the left (the acceleration is positive). As t

increases from the value 1.6, the point moves always to the right with increasing

velocity and acceleration.

2. Discuss and draw the distance-time diagram for the motion defined by

(1) x = acoskt.

Solution. Differentiating, we obtain

(2) v = ak sin kt,

and for the acceleration, differentiating (2),

(3) / = - a*2 cos kt = - k2x [from (1)].

Hence the acceleration and distance are proportional and differ in sign. Such
a motion is called a simple harmonic motion.

The locus of (1) is a cosine curve, the properties of which are well known.
The graph of the equation of motion has maxima when kt = 2 nir (n any integer),

X

minima when kt = (2 n + 1) w, and points of inflection when kt =LJLL
23

any maximum point the ordinate is equal to a, and at any minimum point it is

equal to a. The variation of x, v, and / is exhibited in the table.

Angle kt
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increases from to-, the figure [see also (2)1 shows that the slope of the tangent
k

line (and consequently also the velocity) is negative, and the point moves towards

the left. When t = -, x = a, v = 0, />0, and the point is at an extreme posi-
fc

o _
tion to the left. As t increases from _ to ,

the velocity is positive and the point
k k

moves to the right. When t = ,
we have again the initial values of x, v, and /. As

K

t increases from the value ,
the motion just described is repeated again and again.

The motion is a vibration or oscillation between the points JVand N1 of the figure.

y -a . a NValuet ofx

t-f t-o

tJg t^
fc etc.

The distance a is called the amplitude of the vibration. The tim'e required to

2 IT
move from JVto N1 and back to JV again is . This is called the period of the

vibration. The point midway between N and N1

(the point in the figure) is

called the center of the vibration.

The periodicity of the motion may be best established by reasoning thus. We
note first that the series of values of any trigonometric function is repeated when the

angle has increased 2 ir radians. Since x, v, and /are in this case dependent in their

variation upon sine or cosine, then it is plain that they assume their original values

when kt has increased to kt + 2 TT. But

o o _
Hence t has changed to t 4- -, and the increment is accordingly the period.

K k

3. Discuss the motion defined by

(1) x = Acos(kt + B).

Solution. The distance-time diagram is again a cosine curve with A for maxi-

mum displacement. The difference from the preceding example consists in this :

the initial position on the path is not at an extreme position, but at x = A cos B.

The conclusion is, therefore :

2 IT
The equation (1) represents a harmonic motion with the period , and this is

true for all values ofA and B.

Equation (1) is the general solution of the equation 71, Chapter XIV, which is

called the differential equation of harmonic motion. The statement just made ex-

plains the designation.

4. Discuss the motion defined by

(1) x = ae-*.

Solution. Differentiating and using (1), we obtain

(2) v = ae~' = x,

(3) f=ae~ t = x.
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In this case, therefore, the acceleration and distance are proportional and agree

in sign. From (1) x =
,
and therefore x, which is always positive, decreases

e*

numerically as t increases ;
v is always negative and

decreases numerically (that is, the speed decreases).

The graph is now readily drawn and exhibits

the motion of a point from N towards with .

constantly diminishing speed and acceleration.

The motion dies away as O is approached. There is obviously no period, and the

motion is called aperiodic.

5. Discuss and draw the graph of the equation of motion,

(1) x = ae~at cos kt,

a, a, k being arbitrary, positive constants.

Solution. Differentiating, we obtain for v and /the expressions,

(2) v = ae-at
(a cos kt + k sin kt},

(3) /= ae^a<[2 ak sin kt + (a
2 - fc

2
) cos kt~\.

The graph of (1) is readily constructed and the characteristics of the motion ap-

pear from it. Write (1) in the form of a product,
(4) x = ae~at cos kt.

The factor cos kt varies

from 1 to + 1. Hence the

distance x varies from ae~*

to + ae~at
;

that is, the graph
of (4) is bounded by the curves

(5) x = ae~at
,
x = ae~at

.

These are the dotted lines

of the figure.

Again, the product in (4)

vanishes only when one of the

factors is zero. But e"~at is

never zero for finite time. Hence x = when and only when cos kt = 0.

Furthermore, the graph touches * the boundary curve when cos kt = 1. We
therefore draw also the auxiliary c,urve x\ = cos kt. We now observe that

(1) The points of contact with the boundary curves are directly over (or under)
the maximum and minimum points on the cosine curve.

(2) The required curve crosses the T-axis at the same points as the cosine curve.

The graph may now be drawn, for we have merely to construct a winding
curve from the initial point t = 0, x = a, which shall cross OT at MI, Ms , M$, etc.,

and touch the boundary curves at points corresponding to Jf2 , Mt, etc.

From this construction it is obvious that maximum and minimum values of X
occur between each intersection on OX and the succeeding point of contact with

* For when cos kt = l, then sin kt 0, and we find from (2) v = ^ aae-**. This

dx
equals, from (5). Hence the slope of (4) at 3/2 , Mt , etc., is the slope of the proper

boundary curve (5).

Cosine Curve
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the boundary curve
;

that is, for a value of t between successive odd and even

multiples of In fact, from (2), v = 0, when
2i K

(6) a cos kt + k sin kt = or tan kt =
/c

Now the tangent is negative when the angle is of the second or fourth quad-

rants. Hence kt must lie between and -, or and -^, etc., or t is between222 2

successive odd and even multiples of
/'

The characteristics of the motion are now obvious. It may be described as a

vibration with constantly diminishing amplitude. Remembering that the simple
harmonic motion represented by the factor acoskt of (1) has the constant ampli-
tude a, it is plain that the presence of the second factor e~"* accounts for the dimin-

ishing amplitude.

This factor diminishes as t increases, and is called the damping factor. The
motion is called damped vibration.

From (6), it appears that a period of time equal to (from kt = 2?r) must
fc

elapse between successive maxima. The motion is accordingly said to have a period

equal to
,
the same, namely, as the period of the undamped harmonic vibration

(Ex. 2).

The successive amplitudes obey a simple law. For such positions differ by a

semi-period, and hence two such values of x may be written in the form

Taking natural logarithms and subtracting, we obtain

k
That is, the logarithms of successive amplitudes form a decreasing arithmetical

progression.

This is otherwise expressed by the statement that the logarithmic decrement oj

the amplitude is constant,

6. Discuss the motion whose equation is

(1) x= Cerr* cos (It + 7),

in which C, /x, ?, and y are arbitrary constants, /u being positive.

Solution. The construction of the graph is precisely as in the previous ex-

ample ; namely, the boundary curves are

(2) x= CC-M,

and the auxiliary cosine curve is

(3) xi = cos (W + 7).

The difference from the preceding case is in the initial position, which is now
XQ = C cos 7, an arbitrary point on the path, not necessarily (7 = 0) an extreme

position.

The result is then this :

The motion defined by (1) is a damped vibration with the period , and this is

true for all values of <7, 7, Z, and n, provided n > 0.
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Equation(l) has the form of the general solution of the equation 73, Chapter XIV,
which is called the differential equation of damped vibration. The theorem just

stated explains this designation.

PROBLEMS

1. Show that each of the following motions is uniform or uniformly accel-

erated, draw the distance-time diagrams and discuss the motion :

(a) x = 2 4 1
; (ft) s = v t + h

;

(6) y = at + b
; (i) s = \ gt* + vj + s

;

(c) s = 6 1 - 16 2
; ( j) y = 50 + 10 1 - 16 f

2
;

(d~) y = 10 t - 3 t2 ; (&) s = \ g sin a t'
2

;

(e) x = a + bt + c 2
; (?) s = vj \ g sin a t'

2
;

(/) s = |
2 + V ; (m) x = 1000 * - 16 2

;

(sO y =v -
i fltf

2
; () y = - woo + 10 2

.

2. Show that the distance-time diagrams of uniform and of uniformly acceler-

ated motion are respectively a straight line and a parabola.

3. Show that each of the following is a simple harmonic motion.* Draw the

distance-time diagrams, discuss the motion, and find the amplitude a and period T
in each case.

() x = 5 sin t
; (#) y = 10 sin ( vt \ -IT) ;

(&) y 10 cos t ; (ft) y sin t -f cos t ;

(c) s = 2 cos ^ irt
; (z) s = a sin (kt + a) ;

'

(d) x = 5 sin f irt ; ( j) x = 6 cos (/^ |3) ;

(e) y = a sin fc
; () a; = 2 sin t + 3 cos t.

(/) x = 5 cos (t + ?r) ; (?) a; = a cos A* + b sin fc .

Answers denoting amplitude by a and period by T.

(a) a = 5, T = 2 TT
; (ft) a = V2~7 7

t= 2 IT
;

(c) a = 2, r=4;
"
*

'

(cZ) a = 5, 7=$; a) a==6? r = ^;

(g) a = (t ' T=Y' (A) a = Vl3, r=2r;
f f\ n e; v o_ .

\J ) a * *'r
i . 2 IT

(fir) a = 10, r=4; ^ a= Va2 + ft
2

,
T=

* Show that the given equation is obtained from x = A cos (t< + B) by replacing the

constants A, k, B by particular values. Thus for (a), x = 5sin, we set A = 5, k= 1,

For x = 5 cos (t -\ = 5 cos (- t\ = 5 sin t.
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4. Show that the acceleration and the distance are proportional and differ in

sign for each of the following motions (simple harmonic) :

(a) x = A sin (kt + a) + B cos kt ;

(b) y = A sin kt + a cos (kt + /3) ;

(c) s = a sin (>
- a) + 6 cos

(/j.t /3).

Reduce each to the form A cos (kt + -B) .

5. Discuss and draw the distance-time diagram of each of the following motions

and show that each is a damped vibration.*

(a) x = 5e~*
t

cos%irt; (0) x = ae~?t sin kt ;

(6) 3/
= 2e~"*sin|ir; (ft) y = 5 e~^sin (t + Jir) ;

(c) s = 10e~'*cos; (0 s = e~
a*

(a sin Atf + 6 cos to) ;

(d) sc = 5e~ i< sin; ~<
_ CO z = 10e ^ 3

cost;

(e) x =

6. Discuss and draw t the distance-time diagrams of the following equations of

motion:

(a) x = sin t + cos 2 t ; (d') y = e~*
t cost + sin t ;

(6) z = a log (l-); 0) y = sin^ + sin;
(c) y = ^(e

t + e~
i

}; (/) y = e~^ l
cos < + 10 sin t.

7. Show that every solution of - + fis = X, where
/j.
and X are constants and

dt2

/t<0, defines a harmonic motion. Find the period and the center.

Ans. T=^; (-, o

VM \M

8. When will solutions of + 2/x + Xs = define damped vibrations ?

9. Discuss and draw the distance-time diagrams of the following equations of

motion :

(a) x = tsint; (c) s = ( + !) cost; (e) y =
*

r

10. Discuss and draw the distance-time diagrams of the following equations of

motion :

(a) * = sin t + 2
; (e) x = ae~at cos kt + b

;

(b) y = cost 10; (/) x = a cos kt + b
;

(c) s = e~'cos< + 1
; (g) y = a cos kt + b sin kt + c

;

(d) z = 10e~** cos t + 5
; (A) s = A sin (/& + /3) + 6.

* Show that the given equation is obtained from (1), p. 52, by giving to (7, ^, Z, and

y particular values.

t When the function of the time is the sum of two simple functions, we may draw
the graphs of the latter and add the corresponding ordinates. For example, in (a), add
the ordinates of %i = sin t and a;2

= cos 2 1.



CHAPTER III

KINEMATICS OF A POINT. CURVILINEAR MOTION

28. Position in a plane or in space. Vectors. In the discus-

sion of the rectilinear motion of a point the quantities involved

were time , position on the straight line x, velocity t>, speed ,

and acceleration f. Any value of , a;, v, or f is indicated by a

single number (positive or zero or negative), and any value of s is

indicated by a single number (positive or zero). Quantities which

take on values that can be indicated by single numbers are called

scalar quantities. Such quantities have magnitude (+ or ) only.

A vector quantity is one which has magnitude and direction. For

example, (1) the position of a point P(p, 0*) in a plane is indicated

by its distance from the origin (magnitude) and the angle which

OP makes with the initial line; (2) the position of a point P(/>, <, 6)
in space is indicated by its distance from the origin and the

direction of the line OP.* Since a scalar quantity has magnitude

only, any value which it may take on can be represented graphic-

ally by the length of a line taken in the proper algebraic sense.

To represent a vector quantity graphically the line must have

length and direction. By indicating the direction properly the

length may always be taken as positive. Hence we make the

definition, a vector is a straight line having length and direction.

From this definition we conclude that two vectors

AB and A"B" are equal if the lines AB and A"B"
are parallel, equal in length, and taken in the same

sense. If the lines are parallel and equal in length,

but taken in the opposite sense, that is, if the di-

rections differ by 180, as AB and A'B', we say AB = - A'B' .

A vector is zero if, and only if, its length is zero. In solving

problems involving vectors we may always replace a vector by
an equal vector, which is equivalent to saying that a vector may
be moved providing it is kept always parallel to its original posi-

tion.
*
Analytic Geometry, p. 394.

55
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29. Addition of two vectors. If a point is moved in a plane,

the displacement is a vector quantity. Suppose a point is moved
from the origin to the position .4(2, 4). The displacement is rep-

resented by a vector whose length OA = V20 and whose direc-

tion is indicated by the angle 6 which

the line OA makes with the JT-axis.

Suppose the point is given a second

displacement from A (2, 4) to B (5, 3).

This displacement is represented by
the vector AB, whose magnitude is V(2 5)

2+(4 3)
2= VlO,

and whose direction is given by the angle <. These two dis-

placements taken in order are evidently equivalent to a single

displacement from to B, which is represented by the vector OB,
the magnitude of which is ~v/34 and whose direction is given by
the angle -\^.

Hence we say that the vector OB is the sum of the

vectors OA and AB.
OB = OA + AB.

If two vectors AB and DE are given, we obtain the sum
AB+DE\n the following manner. From the point B construct

a vector BC=DE. The vector AC is now
defined as the sum of AB and BC, and, there- .

fore, as the sum of AB and DE.

BC=AC.

The process of adding two vectors is essentially this. Bring
the two vectors into such a position that they form a broken line

ABC. Their sum is then equal to the closing

line AC. It is readily seen that the order of

addition can be changed without altering the

sum.
AB + BC= BC+ AB.

The figure is a parallelogram and the proof is obvious.

Addition of any number of vectors. The preceding process is

applicable to the addition of any number of vectors. Suppose it

is required to find the sum of the vectors A^B^, B2
CV C2

DV and

DJE^. This is accomplished by repeated application of the process
of adding two vectors.
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(1) Construct the vectors AB and BC equal respectively to

A
1
B

1
and B

2
Or The sum of these two vectors is AC.

.-. A^ + B^ = AC.

(2) Construct CD = C2Dr The sum
of AC and CD is AD. That is,

A& + B2
C

1 + C'aDj
= AD.

(3) Construct DE= D
z
Er The sum

of AD and DE is AE. Therefore,

The process is applicable to any num-
ber of vectors and is essentially this. To add any number of

vectors, form a broken line having its segments equal, respec-

tively, to the given vectors ; the sum is then the closing line.*

Since the order of addition of two vectors may be changed with-

out changing the sum, the order of addition of any number of

vectors may be changed without changing the sum.

The sum of any number of vectors is called the resultant of

those vectors.

30. Subtraction of vectors. Any vector AB may be sub-

tracted from the vector CD by adding to CD the negative of AB.
In the figure DE = -AB and CE = CD + DE = CD - AB.

For practical purposes it is more convenient to obtain the

difference of two vectors as follows : To
subtract AB from CD, lay off the two vectors

from the same origin ; that is, construct

CF = AB. Then

CF + FD = AB + FD = CD.

Whence, by transposing the term AB,

FD = CD - AB.

The results of the two methods are equal, as can be shown by

comparing the equal triangles, figure a and figure b.

31. Multiplication of a vector by a scalar. If a vector AB is

multiplied by a positive scalar W, the, result is a vector A'B'

* Analytic Geometry, p. 47.
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having the same direction as AB, while the magnitude of A'B' is

W times the magnitude of AB. For example, in the figure (a),

A'B'= 2AB.

A t ^ If a vector AB is multiplied by a nega-

r g, tive scalar W, the result is a vector B'A'
Fi9-a which has a direction opposite to that of

^ AB and a magnitude equal to W times the

.

, magnitude of AB. For example, in the

figure (5),

B'A'= -2AB.
To divide a vector by a scalar W, we multiply the vector by

For example, in figure a,
A 7? _ 1 A' 7?'JL-tS 2^1 f

and in figure b, AB =
| .S'^4/.

32. Resolution of plane vectors. Suppose a vector AB is given
and it is required to find two vectors which are equivalent to AB,
that is, whose sum is equal to AB. This may be done in an infi-

nite number of ways. For, suppose C is. any point, and the lines

AO and OB are drawn. Then, by the definition of a vector sum,

AG+ OB=AB.
The point may be determined so that the vectors AO and CB
are parallel to the X- and Z-axes respectively. This is accom-

plished by drawing through A a line parallel to the JT-axis and

through B a line parallel to the Y-axis. These two lines inter-

sect in the required point C. For convenience we will denote the

vector AB by a, the vector AC by
*
a^ and CB by a

y
. The vector

ax is called the component of a in the direction

of the Jf-axis and the vector a is said to be

resolved along the line OX\ a
y is the com-

ponent of a in the direction of the I
r

-axis, and

a is said to be resolved along the line OY. It

is evident that ax is the projection of a on the

Jf-axis and ay is the projection of a on the P-axis.

A vector may be resolved along any directed line by projecting
the vector on that line ; that is, the component of a vector along

* In using the components of a vector a, we need to give only the numerical values.

The directions are indicated by the subscripts.
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any directed line equals its magnitude multiplied by the cosine of

the angle its direction makes with the given line.

In solving problems involving vectors it

is usually more convenient to deal with the

components. If the axial components of a

vector a are ax and a^ it is evident from the

figure that the magnitude* of a is given by .

a = ~Vax
2 +ay

2 and the direction of a is the

same as the direction of a line from the origin to the point

(o^ ay~). If we denote the angle which the vector a makes with

the .X-axis by (a?, a), we have

cos (x, a) = : sin (x, a) =
a a

Hence we have the formulas :

(I)

a = + Va/ + a
y
2
,

ax = a cos (x, a),

ay
= a sin (x, a) = a cos (y, a).

In particular the components of the vector which represents
the position of a point P in a plane are the rectangular coordi-

nates of that point.

When the axial components a^ ay of a vector a are known, its

component in the direction of any line I is

readily found. Denote the angle which I

makes with the JT-axis by (a?, t). The projec-

tion a, of a upon I is equal to the sum of the

projections of ax and ay upon I. The projec-
3T tion of ax upon I is ax cos (x, V) and the pro-

jection of a
y upon I is ay sin (x, I). There-

fore the component of a in the direction I is

(II) a, = ax cos (a?, 1) -+- ay sin (a?, t).

Components of the resultant of any number of plane vectors.

Let a, b, c be given vectors with components ax , a
y ; b^ by ;

cxi cy respectively. Let R (components R^ Ry} be the

resultant of a, b, c By the definition of a vector sum, we

regard a, b, c as the segments of a broken line, while R is the

* The letter a represents the magnitude of the vector a.
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closing line. By the second theorem of projection,* the sum of

the projections of a, b, c upon any line is equal to the pro-

jection of R upon that line. Therefore,

(III) + C +

33. Vectors in space. The results for plane vectors may be

extended at once to vectors in space. Any vector in space may
be resolved along three mutually perpendicular lines by projecting
the vector upon each of the lines.

If the three mutually perpendicular lines are the X-, Y-, and

.Z-axes, the components of the vector a are denoted by ax, ay, az .

The magnitude of a is a = Va,,.
2 + a

y
* + a/, and its direction is

the same as the direction of a line from the origin to the point

(a^ a,,, a^). The direction cosines of the vector are

cos (a?, a) = : cos (y, a) = ; cos (z, a) = .

a a a

For space we have the formulas :

(IV)

a = + V
ax = a cos (a?, a),

a
y
= a cos (y, a),

az
= a cos (s, a).

+ a
y
z + 2

2
,

Since the second theorem of projection holds also in sp'ace,f the

components of the resultant R of any number of vectors a, b, c

are

(V)

When the axial components ax,
ay , az

of a vector a in space are known, its com-

ponent in the direction of any line I may
be found. Let the direction angles of I

be (a?, J), (y, I), (, I). The projection

aj of a upon I is equal to the sum of the

projections of a^ a
y ,
and a,, upon Z.

The projection of ax on J is a/cos (a?, J).

*
Analytic Geometry, p. 47. t Analytic Geometry, p. 328.
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The projection of ay on I is ay cos (t/, I).

The projection of az on I is az cos (z, J).

Therefore,

(VI) a, = ax cos (x, I) + a
y
cos (y, i) + az cos (, I).

ILLUSTRATIVE EXAMPLES

1. Find the resultant of the three plane vectors a, b, c whose components are

(3,
-

2), (2, 6), (-7, -
1), respectively.

'

Solution.

By (Hi), = - 2 + 6 - 1 = 3.

By (I), E = Vl3, cos (a?, U) = -
A/13'

sin (a?, -B)=-^r-
V13

In the figure, this result is checked by graphical construction of the resultant.

2. Three vectors a, b, c in space have magnitudes equal to 12, 8, and 6,

respectively, and their direction angles are as follows :

(a) (a?, a) = | TT, (y, )
=

*-, (z,a}-\ir;

(6) (OB, 6)= ITT, (y, 6)=f7r, (a,6) = ^;
(C) (OB, C) = J 7T, (y, C) = I 7T, (S, C) = I T.

Determine the resultant.

Solution. Finding the axial components by (IV), we have

rt*= 6\/2, y
= 0, az = 6\/2,

, 6,
= -4, 62 = 0,

, =-4, c, = -3.

Hence, applying (V), the resultant has the components

3. Given in the JTF-plane a vector a whose axial components are (2, 1).

Find its component along the directed line from the origin to the point (2, 1) .

Solution. In the figure, I represents the given

line, OA the given vector, OA' the projection of

OA on I.

2 1
By geometry, cos (a?, 1) = = ; sin(a?, 1} = -.

V5 V5
By (II),

V5 V6 A/5 5

The negative sign indicates that a has the negative direction on I.



62 THEORETICAL MECHANICS

PROBLEMS

1. Determine in direction and magnitude the resultant of each of the following

groups of vectors in a plane, given by their axial components. Verify the result in

each case by a graphical construction.

(a) (2,0), (-2, -6), (6,3).'

(6) (-1,5), (2, -1), (8,2).

(c) (0,1), (5,6), (-2, -8), (-3, -4).

(d) (9, 0), (10, 5), (6, 2), (1, 4), (2, 3).

() (0,
-

9), (- 1,
-

6), (2, 5), (- 1,
-

8).

2. In the following examples the magnitude and angle made with OX of cer-

tain vectors are given. Determine the resultant in each case.

(a) 5, | TT
; 8, $ ir. Ans. Components are [(f

- 4 V3), (fV3 + 4)].

(6) 2, i TT
; 9, | TT. ^ls. (- |V3, -

f ).

(d) 4, | TT
; 10, f JT.

-4*. (- 5 V3, 1).

(e) 4,1,; 9, -v,.

' ^
3. In problem 2 find the component of the first vector along the directed line

determined by the second.

Ans. (a) |; (6) -lj (c) --^r; (d) -2; (e) V2(V3 + 1).
* V2

4. Given the axial components of the following vectors in space. Find the

resultant of each group :

(a) (1, 1, 5), (2, -1, 6). (c) (0, 6, 5), (1, 9, -8).

(6) (1, 0, 8), (- 1, -1, 0). (d) (3, -4, 9), (6, 2, 3).

(e) (-1,2,8), (4, 6, -2), (9,10,11).

5. The magnitude and direction angles of certain vectors in space are as follows.

Determine the resultant in direction and magnitude.

(a) 10, IT, J 7T, f 7T
; 5, 7T, } 7T, f 7T.

^Iws. Components are f
5
-, , 5^-^

-- "V^TL2 2 \\/2 / -"

(6) 6, ^TT, fTr, |TT; 4, $ T, * T, J ,r.

s. Components are [(3V2 + 2V3), 3, 5].

6. Determine the component of each of the pair of vectors in problem 5 (a),

(ft), along the other.

7. A point has uniform motion along OX with a velocity of 10 ft. per second.

Find the component of the velocity along the directed line from (0, 0) to (3, 4).

Ans. 6 ft. per second.

8. Find the resultant of the following velocities, the capital letters indicating

points of the compass as usual, and the numbers the magnitude :

15 N., 20 E., 20V2 N.W., 35 W. Ans. 35v/2 N.W.
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9. Find the resultant of :

(a) accelerations 5, 8, 10 parallel to the sides of an equilateral triangle taken

in order. Ans. (Taking first component along X-axis) ( 4, V3) .

(6) velocities 2, 5, 6, 3 parallel to the sides of a square taken in order.

Ans. (-14,2).

10. A point undergoes three displacements of 1, 2, and 3 units, respectively, in

directions parallel to the sides of an equilateral triangle taken in order. What is

the resulting displacement ?

Ans. V3~ in a direction perpendicular to the second side.

11. A ship is carried by the wind 3 mi. due north, by the current 4 mi. due

west, and by her screw 20 mi. southeast. What is her actual displacement ?

12. A mail bag is thrown from a train with speed of 20 ft. per second perpen-

dicular to the track. If the speed of the train is 40 mi. per hour, what is the

direction and speed of the bag relative to the earth ?

13. A particle is kept at rest by forces of 6, 8, 11 units. Find the angle be-

tween the forces 6 and 8. Ans. 77 21' 52".

14. A boat is carried southwest by the current with a speed of 5 mi. per

hour and 30 south of east by the wind at the rate of 12 mi. per hour. What must

be the direction and magnitude of the speed due to her screw if she remains at rest ?

15. Three posts are placed in the ground so as to form an equilateral triangle,

and an elastric string is stretched around them, the tension of which is 6 Ib.

Find the pressure on each post. Ans. 6 \/3.

16. ABCD is a square, and the middle point of EG is E. Find the resultant

of three velocities represented by AB, AE, and AC.

17. The angle between two unknown forces is 62, and their resultant divides

this angle into 40 and 22. Find the ratio of the component forces.

18. Three forces act at a point and include angles of 90 and 45. The first Jwo
forces are each equal to 2 units and the resultant of them all is VlO units. Find the

third force. Ans. V2 units.

19. If three forces of 99, 100, and 101 units, respectively, act on a point at angles

of 120, find the magnitude of their resultant and its inclination to the second force.

Ans. V3, 90.

20. A weight of 40 Ib. is suspended by two strings, inclined to the vertical

at angles of 30 and 45, respectively. Find the tension in each string.

Ans. 20( VQ - V2), 40(V3 - 1).

21. Given the vectors a(3,
-

2), b(5, 0), c(- 10, 6), d(7, 7). Construct the

figures and find the resultants of the following :

(a) a + 2 b - 3 c ;

(6) 2a-b + c + 2d;

(c) 3a + 4c-d;
(d) 4b-2c + 5d;

(e) 10 a + 5 b + 4 c ;

(/) 2 a + 3 b + c - d ;

0) 2a-3b-2c-2d.
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34. Displacement in a plane. Path. Suppose a point moves in

a plane. Then its position vector changes as the time changes.

If the law of the motion is known, the position vector p is a

known function of the time, and its com-

ponents (px=x,py
= y) are known functions

of the time ;
that is,

(Vii) *

Equations (VII) are called the equations
*/ x of motion. By assuming values tr 2, t

s, etc.,

for the time we may compute the corre-

sponding position vectors p x , p2 , p3 , etc. The locus of the extremities

of the position vectors is the path of the moving point P. Since the

components of the position vector are the ordinary rectangular

coordinates, the equations (VII) may be regarded as the parametric

equations* of the path. The rectangular equation of the path

may be obtained by eliminating t from the two equations (VII).
If pj is the position vector at the instant t^ and if p2

is the

position vector at the instant 2 , the total displacement during the

interval of time from
t^

to
2
is represented by the vector d = P\P^

This displacement is evidently equal to the difference of the vec-

tors p2
and pj (Art. 30); that is,

d = P2
-

Pi-

The position of the point at the instant =0 is called the initial

position. It is represented by the position vector p whose com-

ponents are x =
<j> (0), yQ

=
i/r (0). The length s of the arc de-

scribed in the interval of time from to t is a function of t. The

expression for s is given by (66, Chap. XIV)

J/^
/^7/.+?

Js
and -

The sign of the radical is always taken as positive. The deriva-

dsds
tive is the time-rate of change of s and is called the speed.

* Calculus, p. 93.
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35. Velocity in the plane. Velocity curve. Suppose a point P
moves along a path AB in the JTl^-plane and that the equations

of its motion are x =

Suppose that at the instant t = t
1
the point is at the position P l

represented by the position vector pp and at the instant t =
2

it

is at the position P2 represented by the po-

sition vector p2
. During the interval of time

2
t
l
the displacement is represented by the

vector d=p2 pr
The quotient p p

is called the average velocity during the in- O\ X
terval of time t%

tv The average velocity is a vector, since it

is the quotient of a vector and a scalar. It has the same direc-

tion as the displacement vector d = p2 pr and its magnitude is

equal to the magnitude of d divided by t
z

tr
Let us now consider a fixed instant t=tv the corresponding

position vector being px , and denote an interval of time immedi-

ately following j by A, and the displacement during the interval

A by Ap. The average velocity during the interval of time A

is therefore

To fix the ideas, let us consider some particular values for Af,

the unit of time being 1 second.

(1) Let A = l; the displacement
vector Ap = P^P^ (see figure), and the

average velocity during the interval of

one second immediately following the

P,P4

1

resenting the average velocity is there-

fore equal to the displacement vector,

that is, equal to the chord P^P^-

instant t = is The vector rep-

Let At = \ ; the displacement vector Ap = and the

average velocity during the interval of one half second immedi-

ately following the instant t = s

_ 9
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The vector representing the average velocity has the direction

of the chord and its magnitude is equal to twice the length of the

chord.

(3) Let A = ^ ;
the displacement vector Ap = P^Py* and the

average velocity during the interval of one fourth of a second

immediately following the instant t = ^ is

The vector representing the average velocity has the direction

of the chord P^^ and its magnitude is equal to four times the

length of the chord.

(4) Let A approach zero as a limit. The vector which repre-

sents the average velocity has the same direction as the chord,

and hence when A approaches zero its direction approaches the

^V A-J
i\ o

direction of the tangent to the curve. Multiplying by (As

represents the increment of arc along the curve in the time

we may write :

Magnitude of average velocity = ^- = *

At As A As

As A approaches zero as a limit, As also approaches zero as a

limit, and *- =- approaches 1 as a limit, while ap-
As arc A

ds
proaches as a limit. Therefore the magnitude of the average

at

velocity approaches 37 as a

We now make the definition : The velocity of the moving point at

the instant t =
t^

is equal to the limit of the average velocity as A
approaches zero. The magnitude* of the velocity is therefore

ds

and its direction is the direction of the tangent to the path. The
cosine and sine of the inclination of the tangent are respectively:!

dx dy
ds' ds

* The magnitude of the velocity is the speed. The velocity is a vector quantity and

possesses magnitude and direction.

t Calculus, p. 142.
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Therefore, applying (I), we have for the axial components of

the velocity :

_ ds dx_dx_ jL/(f\

(VIII)

= * * * =

u/a
. **v =

dt
v _ds dy
y

dt
'

ds

From (VIII) we see that the component of the velocity of the mov-

ing point P in the direction of the X-axis is obtained by differentiating

the abscissa of P with respect to the time, and the component of the

velocity in the direction of the Y-axis is obtained by differentiating

the ordinate of P with respect to the time. In other words, vx is

the velocity of the projection of the moving point on the .X-axis,

and vy is the velocity of the projection of the moving point on. the

P"-axis. Hence the

THEOREM. The axial components of the velocity in curvi-

linear motion are equal to the velocities of the axial components

of the motion.

In general the velocity is different at different points of the

path. At the point P1
of the curve the velocity will be repre-

sented by a vector vl ; at the point _P
2 by a vector v2 , etc. Let a

new system of rectangular axes be chosen, 0, Jf, Y, and from the

origin lay off the vectors Vj, V2 , etc.

The locus of the extremities of the velocity vectors in the XY-
plane is a curve which is called the velocity curve of the motion

denned by (VII). The position vector of any point P of the velocity

curve is equal to the velocity vector of the corresponding point

P of the path. The rectangular coordinates of P(x, y~) are equal

respectively to vx and v
y

.
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ILLUSTRATIVE EXAMPLE. Construct the path and the velocity curve for the

plane motion defined by the equations

(1) x = <, y cos 2 t.

t
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3. Two points are describing free paths in one plane such that each path is the

velocity curve of the other. If the moving points be always at corresponding

positions, prove that the paths are conic sections.

36. Acceleration in a plane. In plane motion velocity may be

defined as the time-rate of change of the position vector, and the

acceleration as the time-rate of change of the velocity vector.

Since the velocity is a vector quantity, the acceleration is also

a vector quantity. Let vl
be the velocity

vector at the instant t =
t^ ; and Vj + Av

the velocity vector at t = t + A. The

change in velocity during the interval of

time A is represented by the vector Av and

the average acceleration during the interval

is the quotient .

A*
Velocity Curve

The average acceleration is a vector quantity, since it is the

quotient of a vector and a scalar. The acceleration at any instant

(t = j) is defined as the limit of the average acceleration - as A

approaches zero. This corresponds to the definition of velocity

given in Art. 35. Hence the acceleration can be obtained from

the velocity curve in the same manner as the velocity is obtained

from the path curve. Denoting the acceleration by f, it follows

that its direction is the direction of the tangent to the velocity

curve at the point corresponding to t tv The components of

the acceleration in the directions of the coordinate axes are given

by formulas similar to (VIII). That is, if (x, j/) are the coordinates

of the point P on the velocity curve, then fx = -=- fy = -**-,
at at

and, since x =v^ y =vy , we have

(IX)

f _ vx _ _ _
dt dt\dt) dV

dt
- d (dy\_d*y _~- ~

The axial components of the vector acceleration are therefore

obtained from the equations of motion by differentiating twice.

Furthermore, a statement similar to the theorem of Art. 35 may be

made :
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THEOREM. The axial components of the vector acceleration in

curvilinear motion are equal to the accelerations of the axial compo-

nents of the motion.

The magnitude of the acceleration is obtained from its compo-
nents by applying (I),

/=

37. Motion in space. The discussion of Arts. 34-36 is ex-

tended easily to the motion of a point in space. The difference

amounts to the consideration of the additional coordinate z. Thus
the equations of any motion in space will have the form

(X) * =
<!>(*), y = ^(). * = x().

in which the independent variable represents the time. By elimi-

nation of t from the two pairs of equations (X), the path will be

determined in rectangular coordinates as the intersection of two

cylinders.

The velocity is a vector determined as in Art. 35, and if the

axial components are V& v
y, vg, then in agreement with (VIII),

ds tlx dti dz
CXI) v

=di>
v* = di> ** = <> v*=ai

Finally, the vector acceleration is denned as in Art. 36, and if

fxi fy> fz are its axial components, then

f _ y _ , _ z_
dt $p fy -

~dt
~

~dt^ Tz ~ ~dt~ dt*

The equations of the path being given, the axial components
of velocity and acceleration are obtained by differentiation, and

from these components v and f are determined in magnitude and

direction by (IV).

38. Discussion of any motion. Given the equations of any
motion, the determination of its characteristics involves the fol-

lowing:
1. Notice the nature of the component motions and draw any

conclusions as to the general nature of the motion (periodic, etc.).

2. Plot the path either by assuming values of t and computing
x, y (and 2), or by eliminating t and plotting from the rectangular

equation (or equations). Find the initial position.
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3. Differentiate and find the axial components of the velocity

and acceleration. Determine v and/.
4. Draw the velocity curve and discuss the variation of v with

the time.

5. Discuss the variation of/ with the time, both in magnitude
and direction.

ILLUSTRATIVE EXAMPLES

1. Discuss the motion whose equations are

(1) x = 2t, y=2t-\t2
.

Solution. Following out the discussion :

1. The motion is not periodic. ,

2. The path is a parabola. For,
from (1), t = J x, and .. y = x

The initial position is the origin.

x2
,
or x2 12 x + 12 y = 0, which is a parabola.

3. Differentiating (1), we obtain,

rx =^ = 2, i,- = ^ = 2-=.

.'. v = VtV2 + V = V8 - f t + |
2

(3)

4. The velocity curve is the straight line vx = 2. The initial velocity has the

components (2, 2). Hence at 0, the point is moving in a direction making an angle
of 45 with OX. The vertical

component diminishes from 2

when t = 0, to zero when t = 3,

and thereafter increases numeri-

cally but is negative. Hence

the speed diminishes from its

initial value VQ 2 V2 to a mini-

mum value 2 when t = 3, and

thereafter constantly increases.

When t = 3, the highest point

(6, 3) is reached
;
vy = 0, and hence the tangent to the path is parallel to the JT-axis.

1
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5. From (3) it appears that the acceleration is constant and has a downward
direction.

2. Discuss the motion whose equations are

(1) x = a cos nt, y a sin nt.

Solution. 1. Both axial components are periodic with the same period, namely
2 IT
- Hence the moving point will return to any position in its path after an interval

2 TT
of time equal to and the motion is periodic.

n

2. Eliminating t by squaring and adding, the path is found to be the circle

Y *2 + y
2 = 2

-

The initial position is (a, 0).

3. Differentiating (1),

(2) vx an sin nt, vy = an cos nt.

.'. v = Vflz'
2 + vv

2 = an.

(3) fx = an2 cos nt, fy = an2 sin nt.

4. The velocity curve is a circle of radius an. Hence the speed is constant.

Also when t the components of the velocity

are (0, an). Hence the point describes the circle f Y
in a counter-clockwise direction.

5. From (3) the magnitude of the accelera-

tion is constant. To determine its direction, we
observe by comparing (1) and (3) that

(4) =-nas, fy =-ri*

If in the figure, P is (x, y), then the point

( w2a% ri*y), lies on the line OP produced

through O. Hence the vector acceleration at P ^7 , -r. ^
Velocity Curve

is directed towards the center.

The motion just described is called uniform circular motion. The axial com-

ponents (1) are both simple harmonic motions with the same amplitude a and the

2
same period .

n

example 2, p. 49.)

(Compare

%;

3. Discuss the motion

whose equations are

(1) x = at, y = b sin t.

Sohition. 1. The com-

ponent of the motion in the

direction of the F-axis is

periodic, while the motion in the direction of the X-axis is uniform.
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2. Eliminating t, the path is the sine curve

y = b sin -,
a

whose period is 2 ira and maximum ordinate is b. The initial position is (0, 0).

3. Differentiating (1),

(2) vx = a, Vy-b cos t. .-. v = Va2 + 62 cos2 1.

(3) /z = 0, /,=-&sin=-0. .:f= Vjp.

4. The velocity curve is the portion of the straight line jc = a between the

points y = b and y = b.

From (2) the velocity at has the components (a, 6).
/ Q \

The speed varies between a
(
when t = -, -^, etc.

j

and
\ 22)

Vo2 + 62 (when = 0, x, etc.). That is, the speed is least

at the highest and lowest points, and greatest at the point

of intersection with OX.

5. From (3) the acceleration equals the ordinate numerically but differs in

sign. Its direction is parallel to the axis of T.

The motion here discussed may be thus described. The point moves with con-

stant speed a parallel to OX and simultaneously executes simple harmonic motion

parallel to OY.

4. Discuss the motion represented by

(1) a; = 2 sin t, y = cos 2 t.

Solution. 1. Both components are periodic, and it is apparent that the

moving point will return to any position in its path after an interval of time equal

to2jr.

2. Since cos 2 t = 1 2 sin2 t, we find, on eliminating t,

y = \-2 sin2 t = 1 - \ x
2

.

That is, the path is a portion of the parabola z2 + 2 y 2 = 0. The initial position

is 4(0,1).

3. Differentiating (1),

(2) vx =2 cos t, vy =-2 sin 2 t.

(3)

.-. v = 2 Vcos2 1 + sin2 2 1.

fz = 2 sin t = oc, / = 4 cos 2 t = 4 y.

../=v'*
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4. The velocity curve, plotted from the parametric equations, has the form of

the figure 8.

From (2) ,
when t = 0, vx= 2, vy = 0. The point ini-

tially at A moves to the right to the extreme position

B (2, 1), at which point (t = \ ir) the velocity is zero.

It then returns through A to C ( 2, 1), at which

point v is again zero (t = f IT). The point is again at A
when t = 2 v, and the vibration is then repeated.

t
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3. From (1), we obtain, by differentiation,

(2) vx = asint, vv =acost, v,= b.

.-. v = Va2 + b'2 .

(3) fx = a cos t = *, fy = a sin t = y, ff = 0.

.-./=.
4. When t = 0, z = 0, vy = a, uz = b.

Hence (6 > 0) the point describes the helix with constant speed in the upward
direction.

5. The acceleration is constant in magnitude, is parallel to the -STF-plane, and

is directed towards the Z-axis, since the direction from (0, 0, 0) to ( z, y, 0),

when drawn from (x, y, 2), will pass through the axis OZ.

By comparison with example 2, it is seen that (1) may be regarded as the

motion of a point having simultaneously uniform circular motion around OZ and

constant speed along OZ. Such a motion is obviously that of any point on the

periphery of a screw which is forced inward at constant speed. For this reason

the motion defined by (1) is called a screw motion.

PROBLEMS

1. Discuss each of the following motions :

(a) x = 3, y = 2 t; (1) x = a (t sin ), y = a (1 cost);

(6) x = 1 3f, y = 6 + t ; (m) x = a cos3 1 , y = asin3 1
;

(c) x = a + bt, y = c + dt; (n) x = a (t + sin ), y = a (1 cos);

(d) x = t2
, y=%t; (0) x = a(t sin*), y = b(\ cost);

(e) x = l-t,y = t
2

; (p) x = a (t + sin), y = b(l - cost);

(/) x = 3t, y = 6t-t2
; (q) z = asin3

f, y = bcos8 t;

(0) x =at, y = bt-^gtz
; (r) x = at*, y = a(l- )

2
;

(A) x = at2 + bt, y = ct ; (s) x = a (1 cos t) , y = a sin t
;

(1) x = t, y = t
z

; (t) x = a(l cosf),y = bsmt;

(j) x = t2
, y = t*; (M) * = cos t, y = 4 sin

J.
t ;

(*) x = aeu , y = be-"
; (a) x = a cos t, y = a cos 2 1 ;

(w) x = a sin 2 t
, y = a sin t.

2. Discuss each of the following motions, the components in each case being

simple harmonic motions :

(a) a;=2 sin t, y = 2cos; (e) x asin t, y = 6 sin (t + /3);

(6) x = 2 sin t, y = 3 cos t ; (/) x = 2 sin , y = cos <
;

(c) se = sin, y = cos2<; (gr) x = acost, y = bcos2t;

(d) a; = a sin A:, y = 6 cos kt ; (A) x = sin ^ t, y = a sin
;

(0 x = a cos (kt + /3), y = 6 sin (to + /3) ;

(j) x = a cos (to + /3), y = & cos(to + 0).

3. Discuss each of the following motions in space :

(a) x = t, y = t + l, z = 3-t;
(6) x = l 2t, y = 2t 5, z-t 6;

(c) x = at, y = bt, z = ct;
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(d) x = at + fli, y = U + b\, z = ct + GI;

(e) a; = sin <, /
=

,
2 = cos t ;

(/) x = bt , y = a sin
,
2 = a cos t ;

(gr) x = a cos t , y = bt, z = asint;

(A) x = a cos , y = b sin
,
z = A cos + B sin

;

(t) x = t, y = 1 - <
2

,
2 = 3 1

2 + 4 1 ;

(j) a; = t
2 + 8 + 1, y = t* - 2, 2 = 1 - 8 t ;

(A) X = 2 COS
, ?/

= 3 cos
,
2 =

;

(Z) x = sin , y = cos 2t, z = sin t
;

(m) a; = sin <, y = = cos t, z = - cosf
;

V2 V2

(n) x = acos(kt + /3), y = fcsin (

(o) x a cos3
, y = bt, z = a sin3 t

;

(p) x a (t sin ), y = t, z = a (1 cost).

39. Motion in a prescribed path. The question may be raised:

What characteristics must any motion on an ellipse possess ?

Certain points are readily settled. If the path is

V x 7 '

either axial component of the motion (VII) may be chosen, and

the other is then determined. Thus, if we choose the x component
as the simple harmonic motion,

x = a cos kt,

then, from (1), by substitution,

a2*2 cos2 kt + ay = a262
,
or

y b sin kt.

In general, on a prescribed path one axial component 'may be

chosen arbitrarily, and the other is then found by substitution and

solving. That is, we set x =
(f> (), where

<f> (f) is assumed, substi-

tute in the given rectangular equation, and solve for y.

Further useful equations are the following :

From vx = , v
y
=

-j^-,
we obtain

dt dt

djj

(.*) -5-
=

-5
=

ax dx vx

dt
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When the path is given,
-^ is found by differentiation, arid (2)ax

gives a relation between the components of the velocity which

holds for each point of the path. For example, for the ellipse (1),

this relation is

_ bzx _ Vy

a?y vx

'

Differentiating (2) with respect to a;, we get

dvy _
t

dvx

&2L=<L(?s\^.fa.=
*

dt ^^
dx2 dt\vj

''

dt v*

(3)

In this equation the value of the second derivative of y with re-

spect to x is found from the equation of the prescribed path.

From (2), it has been seen that one of the axial components of

the velocity may be chosen and the other is then determined.

Knowing vx and v^ we may obtain fx and fy by differentiation,

and then check the results by equation (3).

ILLUSTRATIVE EXAMPLE. If the path is the equilateral hyperbola xy c, and

v, = k (constant) ,
find vx and fx .

Solution. From the equation of the path, =? = *.
dx x

Hence, from (2),

(4) |=-f'.

From the equation of the path, we find y = -

x

By substituting, (4) becomes

(5) vz = --x2
.

c

Differentiating with respect to t,

(6) fz = - 2Jxvx =
2
Jfx*.

From the equation of the path y = -, we find^ = -, and substituting in (3)
x dx2 Xs

from (5) and remembering that/y = 0, the results check.
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PROBLEMS

1. In the following problems the path is given. Find (1) fx if vy = /3 ; (2) fy if

vx = a.

(a) xy=a?. Ans.
a*

(6) y = a*. Ans.
~

;
a2

(log a)
2
y.

a2*
log a

(.),- 4

(/) x + y = a
;

(0) a; = a arc vers
y

(2 ay - y
2
)^. ( Here ^ =

*

h* '*-?/

Ans.

, -. .

2
2/

Ans. 5
'

0/
2-a2

)*

2. In the following problems the path and the component of velocity along
one axis are given; to find the component of acceleration along the other axis.

(a) x + y = 1; vx = cos kt. Ans. fv = k sin kt.

(0)2,' = 4 a* ;, = <*. Ans. fx = f-

(a") y
2 = 4 ax: vx=smt. Ans. fv = -

(w
2 cos 4 a2 sin2

).

r

2 tx
(/) z2 + 2/

2 = a2
; v,=p. Ans. fy = - -

a;
2

?/
2

+
^-
= 1

; vy = nb cos n.

Ans f catty . aW \
. fx = -[ -H--

J.
62 \x x* J
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3. In the following problems the path and one component of the motion are

given ;
to find the components of velocity and acceleration and to discuss the

motion.

(a) y* =
.

(6) y
2 = 4 ax

;
x = a cost.

a2 b*

(c) x2 + y
2 = a2

;
x = bcosnt; (b g a). ^ ,,2

(/) _ _ !L + i = o
;
x = a tan t.

(d) z2 + y
2 = a2

; y = c 2
.

;
a" 62

(gr) xy = a?; y = a tan f.

4. A point describes the curve given with constant speed ; to determine the

components of velocity and acceleration.

(a) Ax + By+C=0. (e) ??_g=i.

(6) z2 + y
2 = a2

. (/) xy = a2
.

(c) j/
2 = 4 (KB. (0) x* + 2^ = a*.

X2
y
2 W y = a log sin x.

<*" 6s (i) y = 6 log cos x.

5. Given t?z = kx, vy =ky. Show that the path is a straight line passing

through the origin, and find the components of acceleration.

6. Given vx = ky, vy = kx. Find /x , /y ,
and the equation of the path.

7. A wheel rolls on a horizontal plane so that' its center has constant speed.

Compare the speed at any instant of a point on the circumference with the speed
of the center.

8. Find the axial components of the acceleration in problem 7, show that the

acceleration at any instant of a point on the circumference is constant in magnitude

(

C2\= I and is directed towards the center of the wheel.
a I

9. A wheel rolls updn the inside of a second wheel whose diameter is twice its

diameter. If the center of the smaller wheel moves with constant speed, show that

a point upon its circumference will execute simple harmonic motion.

10. The pin of a crank moves in a groove in a vertical bar whose extremities

move in horizontal grooves. If the crank pin rotates with constant speed, show
that any point of the vertical bar will execute simple harmonic motion.

11. A point describes a curve with an acceleration parallel to OF. Show that

/ = c2 | , where c is the constant speed parallel to OX.
ax*

12. A particle describes the cycloid x = a(0 sin0), y = a(l cos0). Show
2 v 2

that v2 = . If the acceleration is at right angles to the line joining the cusps,
y

show that it varies inversely as the square of the distance from this line, or also

directly as v*.
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13. A point moves on the catenary y = \ a (e
a + e a

).

Show that v2 = -- vx
2
y
2
.

a2

If the acceleration is parallel to F, show that it varies directly as the velocity.

14. What points on the rim of the wheel in problem 7 have the same speed as

the center ? Ans. Points of an arc of 60 described about the lowest point.

40. Tangential and normal accelerations. For plane motion

the components of the acceleration vector in the directions of the

coordinate axes are given by (IX). The components in the direc-

tions of the tangent and normal to the path are obtained by

applying (II).

We first adopt a convention as to the positive direction along
the tangent and normal. The positive direction along the tangent
PT shall agree with the direction of the velocity. The positive

direction along the normal PN shall agree with the direction

obtained by rotating PT counter-clockwise through a right angle.

Hence, by the definition,

(1)

If ft
and fn are the tangential and

normal components of f, from (II),

(2) /, =/, cos (3, T7

) +/ sin (a;, T).

The second member of (2) is re-

duced as follows. Since by assumption (x, T~) = (#, v), we have

r i)

I

cos (x, T) = cos (#, v) = ;

sn = sn

Hence, by substitution in (2), using (IX), we get

f _ dvx VT dVj. vy _ 1 / dvx dvy\ dv^

dt v dt v v \
*

dt
v

dt j dt

Since v2 = vz
2 + r/, by differentiation,

dt dt dt

.
dt> 1 / dvx dv,,\= -

I
vz - + vv

"
I

dt v \ dt dt )
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Similarly, to transform (3), we have, from (1) and (4),

cos (x, N) = - sin (*, T^ = - ^,

sin (#, N~) = cos (x, T) =
v

Substituting in (3), we obtain

(5) f = v*f
Jn

If R denotes the radius of curvature of the path (formula

64, Chapter XIV), we have, by (VIII) and (IX),

Hence, we write (5) in the form

2

(6) / = -

For reference later we give also another form for/M. From

(3), Art. 39, we have

dx2

Hence, from (5),

(7) / =Jn
v

The results found give the

THEOREM. If the vector acceleration at any point of the path is

resolved along tangent and normal, its components are

/VTTT\ f dv rf" dv f &
(XI 1 1) ft = = -

,
=V-r ; fn = ^Bidt dt'- ds K

where R is the radius of curvature.

Since/) and/,, are at right angles, we have obviously

Two important results follow from (XIII). 1. If the path is a

straight line, = 0, and ../ = 0. That is, in rectilinear motion
R

the vector acceleration is directed along the path. 2. If the speed
(t ft /i^^

is constant, =
c, whence - = and .-. /, = 0. Hence in curvi-



82 THEORETICAL MECHANICS

linear motion with constant speed the acceleration is directed along

the normal.

Furthermore, in any curvilinear motion (/= 0), the accelera-

tion is directed towards the concave side of the path. To show this,

four cases must be considered. From formula (7), for / it is

* haveplain that fn is positive or negative according as vx and
dx*

like or unlike signs. By Calculus, p. 137, the path is concave up-
dPu .

wards or downwards according as ^ is positive or negative. The
dx*

four cases to be considered are :

1. The path is concave upwards and the point is moving
cPv

towards the right. Therefore, ^ and vx are positive ; hence fn is
dx*

positive and the resultant of ft
and /, that is, f (fig. a) is di-

rected towards the con-

cave side of the curve.

2. The path is con-

cave upwards and the

point is moving towards

the left. Therefore,

^ is positive and vx

(b)

N

fn "WNi /T >xf fn N is negative ; hence ./ is

negative. By definition

(1), the normal PN is

directed downwards, hence fn is directed upwards and the re-

sultant f is directed towards the concave side of the curve

(fig.J).

Similar results follow for the two cases when the curve is

concave downwards, as in figures c and d.

Since the direction of the tangent agrees with the direction of

the velocity, we have from the figures the criterion : The velocity

vector is rotating counter-clockwise when fn is positive, clockwise when

fn is negative.

The significance of the algebraic sign of ft
is easily determined.

Since ft
=

-;-(-:-),
it is seen that when ft

is positive the speed is

increasing; when negative, the speed is decreasing.
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When the equations of motion are given, we proceed as fol-

lows to find ft and / :

1. Differentiate and find vx, Vy, f^ fy
.

2. Find v from v = ~Vvx
2 + vy

2
.

fl?)

3. Differentiate this last result, giving ft
= -

4. Find / by (5), p. 81.

ILLUSTRATIVE EXAMPLE. Determine the normal and tangential accelerations

in the motion defined by B
x = a cos

, y = b sin t.

Solution. Eliminating t, the path is the ellipse

Following the directions given, we find

vx= a sin t, vy = b cos t, fx= a cos t, fv = b sin t.

Hence v = -f Va2 sin2 1 + 62 cos2 1, From these values we obtain

. _ dv _ (a
2 62) sin t cos t

ab

t
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appear. The time-rate of change of the radius vector p is called

the radial velocity of the point (/o, 0). The time-rate of change
of the vectorial angle 6 is called the an-

gular velocity &> of the point (/a, 0).

That is,

- = radial velocity,

O

(1)
= 6> = angular velocity.

-, We desire to obtain the components
of the velocity vector and of the acceleration vector when re-

solved along and perpendicular to the radius vector. We first adopt
a convention as to the positive directions along these lines.

The positive direction along the radius vector is defined as in

Analytic Geometry, p. 149. The positive direction perpendicu-
lar to the radius vector is the direction obtained by increasing the

vectorial angle 6 by a right angle.

Denoting the components of the velocity and acceleration

vectors along the radius vector by v
ft
and fp

and perpendicular to

the radius vector by VQ and /$, respectively, we have, (apply-

ing (IT)),

v
p
= vx cos 6 + v

y
sin 0,

ve = vx cos sn v
y cos 0,

and

fp
= fx cos 6 + fy

sin 6,

To transform the derivatives of the rectangular coordinates into

the derivatives of the polar coordinates, we have the relation,

ix = pcos0,

} y = p sin 0.

By differentiating (4), we obtain

(5)
at

,

at

a dp . a d0
Vy
= sin -J- + p cos -

,

at dt
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and

(6)

= cos *
~ sm ~ '

17
~

P cos ~
P sm

at* dt dt

_

Substituting (5) and (6) in (2) and (3), respectively, we
obtain, after simplifying,

(XV)

dt

p<o
2

,

since -

Of course v = Vv
p
2 + v^, f= V/p

2 + /e
2

, as usual.^

ILLUSTRATIVE EXAMPLE. A point describes a circle whose equation is given

in polar coordinates. Discuss formulas (XV) for this case (compare Art. 38).

Solution. If the origin is on the circumference, the equation is

(1) p 2 a cos 6.

Differentiating with respect to t,

(2) ^?= 2fflsin0 ,
or v = 2 a sin w.

dt dt

. . vz
Vp

2 + ve
z = 4 a2 sin2 d w2 + p

2w2

= (4 a2 sin2 + 4 a2 cos2 0)w
2

.

Hence

(3) v2 = 4 a2
a>
2

,
or <o =

,
and v.= v sin 0.

2a

Equations (3) express angular and radial velocity in terms of speed, and are

easily found directly from the figure. This verification is left to the student.

To find the component accelerations, differentiate (2) again. This gives

^ = -2acos0w2 -2asin0
dt dt

d(a- - pa>
2 2 a sin -

at



>

86 THEORETICAL MECHANICS

(4) ../p =-2pa,2

u dt

= _ 2 pa>
2 +

V
- a (by (4), Art. 42).
H

Similarly,
., 1 a , o \ n "<">

5)
- /fl =--(^) =2^+ P

-
= 2

wflp + p.

Substituting in /2=/p
2 +/02

,
we find after reducing,

(6) /2 = P2
[

4 2 +
z

\ = 4 a2
(4 w* + a2

).

This equation expresses the total acceleration in terms of the angular velocity

and acceleration.

In particular, assume fd 0, that is, let the acceleration be directed towards

the origin. Then, from (5),

(7) (p
2

)
= 0. .-. p

2w = c, and w =
dt p-

Also, from (5),

2uv +P = 0. ... a = - 2-^-
P

Then (6) becomes

A 2 1 * . ,

4&>1V\ 16a2oV 64a**
/2 = 4a 2 4a>* + -- = =

\ P
2

/ p
2

P
2

(8) ... /=-8?? = -irf,
P P

5

the negative sign being used since the acceleration must be directed towards 0.

This result is due to Newton, and may be stated as follows : If a particle

describes a circle with an acceleration directed towards a point on the circumference,

the acceleration must be inversely proportional to the fifth power of the distance.

PROBLEMS

1. Plot the path,* find vp , vg, /p , fe ,
and discuss the motion defined by the

equation :

(a) p = 2 a sin f
2
,
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2. A point describes the ellipse p =-^--
\ e cos d

Let 6 be given in terms of E by the relations,

, cosfl=-,
l + ecos.E' 1 + ecos.E

and E be given in terms of t by
nt = E + e sin E.

Prove /p = - ??
/<,
= 0, where a = -

1 e2

42. Rotation. When the path is a circle, the motion is called

rotation. If the radius is r, the equations of motion are

(1) p = r
,

= W).
The position of the point is completely de-

termined if is known. For this reason,

the equation p = r is unimportant and it

is customary to call the second equation,

(2) = ^(0,
the equation of the rotation.

From (2), we obtain by differentiation,

(3) = angular velocity = &>
;

(4) ~j~2~
= ~~ = an9u^ar acceleration = a.

That is, the angular acceleration is the time-rate of change of

angular velocity. Angles being measured in radians, angular

velocity is measured in radians per second. For example, if

a) = l TT and is constant, the radius OP
rotates through a right angle in each sec-

ond. In the same way angular accelera-

tion is measured in radians per second in

each second. For example, if a = 1 and

is constant, the radius OP rotates with

increasing angular velocity, the gain be-

ing one radian per second in each second.

The speed in rotation is readily found.

For if 6
Q

is the angle turned through in the time , and the

length of the corresponding- arc, we have
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Hence, by differentiation,

X r N ds d6
(5) = r r, or v = ro>.

dt dt

In rotation the speed equals the angular velocity times the radius.

Next, consider the tangential and normal accelerations. These

are also readily expressible in terms of o and a. For by (XIII)
and (5),

dv dm

(6)

-

B
The same are found from (XV) by noting that in rotation

ft fni fe = ft-

THEOREM. If & and a are respectively the angular velocity and

angular acceleration in rotation, the speed and acceleration are

determinedfrom

(XVI) v = rco, ft = ra, fn = rco2 .

ILLCSTRATIVE EXAMPLE. A fly wheel is making 120 revolutions per minute

(R.P.M.). If the angular velocity diminishes at a constant rate, find the number
of revolutions if the wheel stops in one minute.

Solution. The motion of the wheel is determined by the motion of one of its

points. Let w be the initial angular velocity.

Then, since * 120 R.P.M. = 2 R.P.S. = 4 IT radians per second, we have w = 4 TT.

Since the angular acceleration is constant,

= = k. .-. u> = kt + c, where c is the constant of integration. But u> = o>

(tt

when t = 0.

(1) . . w = kt + WQ or w = kt + 4 IT.

Since the wheel comes to rest in 60 sec.
,
w = when t = 60.

^
. . = 60 k + 4 TT, and k = -

fa IT.

(2) .-. w = -

Writing w =
, integrating and assuming = if t = 0, we obtain from (2)

dt

(3) = - & IT? + 4 rt,

which gives the angle turned through in any time. If t = 60, = 120
-IT, and hence

n

the number of revolutions is - = 60.
2*-

Q _.
* In general, angular velocity = R.P.M.

60
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PROBLEMS

1. In the following problems the equation of motion of a point describing a

circle is given. Discuss the motion.

(a) 9 - at + b ;

(6) e = aP + bt + c
;

(c) = sint;

(d) = t
3 -t;

(e) = irsin .

2

2. A fly wheel making 360 R.P.M. is subject to a constant retardation of 1

radian per second per second. How many revolutions does it make before stop-

ping ? What time is required ? Ans. 36 v revolutions ; 12 w sec.

3. A fly wheel starting from rest is subject to a constant angular acceleration

of \ radian per second per second for two minutes. Find the angular velocity and

the number of revolutions made at the end of the first minute; at the end of the

second minute. ^ 900 R p M 450
rey .

1800 R p M
?

1800
rey

IT IT IT 7T

4. A fly wheel starting from rest and subject to a constant angular acceleration

for 3 minutes makes 5000 revolutions. Find the acceleration.

Ans. a = rad. per second 2
.

5. A fly wheel making 500 R.P.M. and subject to a constant retardation comes

to rest after making 2000 revolutions. What time is required ? Ans. 8 min.



CHAPTER IV

KINETICS OF A MATERIAL PARTICLE

43. Momentum. In the preceding chapters motion of a material

particle has been studied without reference to mass or force. The

latter are now to be taken into consideration. We begin with the

definition :

Momentum or quantity of motion is the product of mass and

velocity, or

(1) Momentum at any instant = mv.

From the definition it is plain that momentum is a vector quan-

tity, being the product of the vector velocity by the positive num-

ber m. The direction of the vector momentum is the same as that

of v, but its magnitude equals the product of mass and speed.

44. Force. The science of Mechanics is founded upon laws

or axioms which sum up the results of experience in the observa-

tion of motion. A set of three Laws of Motion was proposed by
Sir Isaac Newton (1642-1727), the statement of which is general

enough for present purposes. Considering these laws as needed

in the development of our subject, we begin with the

FIRST LAW OF MOTION. Every body persists in its state of

rest or of uniform motion in a straight line, except in so far as it

may be compelled by force to change that state.

Remembering that uniform motion in a straight line means

motion with constant vector velocity, it is plain that uniform motion

means constant vector momentum. The First Law is often ex-

pressed by saying that the body has inertia. A body has no power
of itself to change its state of rest or motion, but continues to

move with constant momentum when not acted upon by an im-

pressed force. That is, by the First Law we conclude that no

force is acting upon a body if the body is at rest or moving with con-

stant momentum.

If, however, the momentum is variable, then the existence of

> forces acting upon the body is inferred. We thus come to the

90
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SECOND LAW OF MOTION. Change in momentum is caused

by forces acting upon the body. Force and change in momen-
tum agree in direction, and the magnitude of the force at any
instant is proportional to the time-rate of change in momentum.

In this statement of the Second Law is contained the defini-

tion of force. For consider the motion of a material particle

of mass m. Its momentum at any instant equals mv. Since ra

is constant, change in momentum means change in vector velocity,

and the direction of change in velocity we know agrees with the

direction of the acceleration. By the Second Law, therefore,

force and acceleration agree in direction. Furthermore, the

magnitude of the force at any instant is proportional to the time-

rate of change in momentum; that is,

(2) Force at any instant = k -
{
mv

}
= km ^= kmf,*

dt\ J at

where k is a constant factor of proportionality. Hence the Second

Law leads to the result :

The force acting at any instant upon a material particle has the

direction of the vector acceleration and in magnitude is proportional

to the product of the mass and acceleration. Force is therefore the

cause of acceleration.

The value of the factor k in (2) depends upon the units

assumed. Evidently for analytical purposes it is convenient to

assume k = 1. This is shown below to be equivalent to assuming
that force is measured in so-called scientific units. For theoretical

purposes, therefore, we may assume as the magnitude of force,

(I) Force = m **" = mf.
at

In Applied Mechanics, however, it is found more convenient to

select k not equal to unity. (See Art. 45.)
Observation of falling bodies makes familiar the phenomenon

of changing momentum. The force in question is then called

the weight of the body, or also, the force of gravity. That is,

weight is the force of attraction exerted by the earth upon other

bodies. The acceleration caused by weight is nearly constant in

* In equation (2) the differentiation is made on the assumption that the mass is

constant. If the mass is variable, a special investigation is required. See Routh,
Dynamics of a Particle, p. 80.
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a small region near the earth's surface and is denoted by g. This

acceleration is also called the intensity of gravity. The numerical

value of g varies from place to place and also depends upon the

units of length and time adopted. In the English and French

systems, respectively, as an average value,

g= 32.2 ft. per sec. in 1 sec. (English),

g=. 983 cm. per sec. in 1 sec. (French).

Dimensions. From the definition 'of force it follows that its

dimensions are mass times acceleration. The derived unit of

force is therefore expressed in terms of the fundamental units of

mass, distance, and time by the dimensional equation

Force = mass x length _

time 2

45. Units of force. Scientific units. For theoretical purposes
it is convenient to define unit force as that force which will

produce unit acceleration in unit mass. With this definition it is

apparent that in equation (2), Art. 44, the factor of proportion-

ality, &, is unity. Hence, in scientific units,

(1) Force = mass times acceleration.

In the English system, the unit of mass is the pound and

the scientific unit of force is the poundal. Hence, one poundal
is that force which will give to a mass of one pound an acceleration

of one foot per second in one second. In the French system, the

unit of mass is the gram and the unit of force is the dyne.

Hence, one dyne is that force which will give to a mass of one

gram an acceleration of one centimeter per second in one second.

Technical units. In engineering practice the English unit of

force is equal to the weight of unit mass and is called the pound.

Referring to (2), Art. 44, since the force in question is weight,
we must replace/by g, and thus obtain

F= kmg.

By hypothesis, when m is unity, so also is F,

.'. 1 = kg and .. & = 1 -T- g.

Substituting in (2), Art. 44, gives as the magnitude of force in

technical units,

(2) Force mass times acceleration divided by <?.
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Comparison of the two systems of units. Mass, time, and

length are measured by the same units in both systems. As just

explained, however, force is measured by different units. To
find the relation between the latter, we may apply (1) to the

case of weight, whence, in scientific English units,

(3) Weight = my (poundals).

Since, by definition of the technical unit, the weight of a 1-lb.

mass equals 1 Ib. of force, hence the equivalence,

(4) One pound offorce = g poundals.

The student will observe that in technical units weight and

mass are numerically equal. The difference is one of dimensions

only.

The following Table of Equivalents, together with equation

(4), will be found useful :

ENGLISH FRENCH

1 foot = 80.48 centimeters;

1 pound (mass) = 453.6 grams ;

1 poundal = 13,825 dynes ;

1 pound (force) = 4.45 (10)
5
dynes.

46. Rectilinear motion. If the path of a material particle is

a straight line, the expressions for the acceleration are given by

(III), Chapter II. Hence, applying (I), and denoting the force*

by J", we have
d?x dv dvF= m~^L

= m ^ = mvT '

dt2 dt dx

Dividing by w, we have the force equation or the differential

equation of motion in a straight line.

(II) (a) =
f, or (6) = >, or (c) =v.

in dt- m dt m dx

Suppose the mass m is given and the force is known. It

is required to discuss the motion. For this purpose we must

determine x from equations (II) by integration. If F is a function

of the time only, (#) should be used ;
if F is a function of the

* The discussion of the text assumes scientific units in all cases.
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velocity only, (5) should be used ; and if F is a function of the

distance only, it is usually more convenient to use (c). However,
in case of a linear function of v and #, that is, if F Av + Bx + C,

where A and B are constants and O is constant or involves , use

(a) (see equations 71, 72, 73, 74, Chapter XIV). If I7

is a con-

stant, either form may be used.

The force alone is not sufficient to determine the motion

completely. For example, let us consider the case of a particle

projected vertically in a vacuum. Obviously the motion will

depend upon the position (on the vertical line OX^) from which

the particle is started, and upon the velocity with which it is

projected. The initial position X
Q
and the initial velocity v are

called the initial conditions, and it will be shown that when known

they determine the motion completely. The only force acting
is the weight, whose magnitude is mg. The direction of the force

is downward, and if we choose the positive direction along OX
downward, we have, from (II), (J),

F_ __ mg _ dv

m m dt"
1

or

dv _
~di~

9 '

Multiplying by dt and integrating,

(1) v = gt + cv
/Y/

where c
l
is a constant of integration ; and since v = -y , we may

CfrC

multiply by dt and integrate again, obtaining

(2) x=%gp + cit+ eyt

where c
z
is a second constant of integration.

To determine the constants of integration, we make use of

the initial conditions. Suppose the particle is started at the

point x with the velocity of projection V
Q

. Then when t = 0,

x = X
Q , and v = v . Hence, substituting in (1) and (2), we have

(!') ,-,*
(2') Xo =cr
Hence the equation of motion is

V
Q
t + XQ.
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The discussion may be made according to the directions given in

Chapter II.

47. Resultant force in rectilinear motion. If a particle mov-

ing in a straight line be acted upon by two or more forces directed

along the line of motion, the resultant acceleration is the algebraic

sum of the accelerations due to the separate forces. Suppose the

particle is acted upon by n forces, Fv Fy, ,
Fn . The acceleration

due to F, is /, = ^, to F* is/2 = ^, -, to Fn isfn = ^, and themm m
resultant acceleration,/, is given.by

(1) f=

Hence, if F denotes the algebraic sum or resultant of the

collinear forces (F= F -f F% + -
n̂), we have, from (1),

(2) F = mf.

That is; if a particle moving in a straight line be acted upon by any
number offorces directed along the line of motion, the product of the

mass and the acceleration is equal to the resultant force.

ILLUSTRATIVE EXAMPLES

1. A heavy body is projected in a vertical direction. Determine the equation

of motion if the resistance of the air is proportional to the speed.

Solution. We take the X-axis vertical with positive direction downwards.

There are two cases : (a) when the body is falling ; (6) when it is rising.

(a) The weight, acting downwards, is positive and equal to mg. The resistance

of the air always opposes the motion, and hence, when the body is falling, this

force is negative. Since the velocity is positive, we have

Resistance =

where M is a factor of proportionality.

The resultant force is F = mg ftanv.

(6) When the body is rising, the resistance of the air acts in the same direction

as the weight, and is, therefore, positive. Since the velocity is negative, we have

Resistance =

and the resultant force has the same form as in case (a).

Hence, in this problem, the force equation is the same when the body is falling

as when it is rising.



96 THEORETICAL MECHANICS

Since the force is a linear function of v, we use (II) (a),

d?x F

, 1N d?x . dx
Cl) d*

+ **
= g'

The solution of the homogeneous equation (see Calculus, p. 440),

cPx . dx n^ + M dT'
is x = ci + c2e-^'.

We see by inspection that a particular solution of (1) is x = &
t, and hence the

general solution is

(2) x = 3- 1 + ci + c2e-M.
P

The constants of integration are determined if the initial position, x
,
and the

velocity of projection, ,
are known. Differentiating (2), we find the velocity,

(3) v = S.
fic^e

~
<*'.

r*

If x =
<)) v = VQ, when t = 0, we find, from (2) and (3), c2 = 3-

,

u. /A

d = XQ + 3-, and hence the equation of motion is

2. A box of mass 100 Ib. is placed on an elevator which ascends with an acceler-

ation of 10 ft. per second per second. What pressure does the elevator exert upon
the box ?

Solution. Taking the positive direction upwards, and denoting the pressure of

the elevator on the box by P, we have for the resultant force,

F =Pmg = mf.

Substituting the values of m and /, we find

P= 100(10 -f 32) = 4200 poundals.

PROBLEMS

1. Find the equation of each of the following rectilinear motions under the

given conditions :

(a) Fx = mt ; x l, v = 0, when t = 1.

Ans. x = %t
3

\ t + f .

(ft) Fv
= m(t-l); y = 0, v = 1, when t = 0.

Ans. y = \t*-\P + t.

(C) F - __
;
x - 0, v = 0, when t = 2.

I 1

Ans. x = (t- l)[log (-!)-!].
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(cZ) Fy m cos t
; y = 0, v = 0, when t = 0.

Ans. y = 1 cos .

(e) .Fa;
= mx

;
x = a, u = 0, when =

^.
j3

.Aws. x = a sin .

(/) Fy
= my ; y 0, u = 1, when = w.

Ans. y sin .

(00 -F* = mx
;
x = a cos /3,

= a sin /3, when = 0.

-4ns. x - = cos (Z + /3) .

(A) .Fj,
= m#2

y ; t/
= a cos /3, v = ak sin /3, when t = 0.

Ans. y = acos(kt + fi).

(i) J^ = mn2x
;
x = an sin /, w = an cos v, when t = 0.

(?) -F
1

,
= my ; y = 0, = 1, when = 0.

Ans. y = ^(e
t + e~ t

).

(fc) Fy
= 2my2mv; y = 0, v = 10, when = 0.

(Z) .Pc = 25 mx 6 mv
;
x = a, v = 0, when t = 0.

-

(m) Fx = 2 /umu fc
2mx ; x = 0, v = ft, when = 0, (A; > /u).

b
Ans. x = , e~^ sin V&2

/u
2

(n) J^ = 4 mx + 2 m cos t
;
x = 0, v = 0, when = 0.

J.ns. x = f (cos t cos 2 1) .

(o) .Fy = my m sin t
; y = 0, v = 0, when t = 0.

s. y = \t cos ^ sin .

(p) ^x = &2 nx + msin nt; x = 0, v = 0, when < = 0.

cos kt H-- sin n..

A(&
2 n2

) ^2 n2

+ m cos w
; y = 0, v = 0, when t = 0.

() ^ = mx + m sin + 3 m cos 2 f
;
x = 0, = 0, when = 0.

2. Discuss the following rectilinear motions, taking into account the initial

conditions.

(a) /= a2 + x, given = c, x = 0, when t = 0.

(6) /= x~ 3
; given v = v

,
x = XQ, when = <>

(c) f=v2
; given v = \, x = 0, when < = 0.

(d) f=av; given c = 6, x = -
,
when t = 0.

,. a

(e) /=fi- ; given r; = 0, x = 0, when = 0.
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(/) Fx = m (at
2

--}; given v = -, x = ^,
when t = -.

\ ct/ c c c

Answers :

(c) x= -log (1-0-

/ N 1 i, (I + * ** - f
~ kt

.

(e) t = log 2 !

; v = ;

2* g-kv ekt +e- kt

a 4c2

3. Show that a particle projected with a velocity v and acted upon by a

constant force mk will acquire a velocity equal to V2 kx + vd2 in moving the

distance SB.

4. A body is projected vertically upwards with a velocity V. Prove the

formulas v= V gt, h = Vt \gt
2

,
where h is the height at any instant. What

is the greatest height ? , , _ V 2

5. A body of 25 Ib. mass is acted upon by a constant force which in 10 sec.

gives it a velocity of 75 ft. per second. What is the magnitude of the force in

poundals ?

6. A heavy body is projected in a vertical direction. Write the force

equation and find the equation of motion if the resistance of the air is proportional

to the square of the speed.

Ans. When the body is rising, F=mg + prnv
2

;
x = -

log sec (Vjigt + c\) + c2 .

When the body is falling, F= mg /imv
2

; x /
^ + 1 log (1 e~2yf^st+c l ) + c%.

7. An elevator, starting from rest, has a downward acceleration of 16 ft. per

second per second for 1 sec., then moves uniformly for 2 sec., then has an

upward acceleration of lOf ft. per second per second until it comes to rest,

(a) How far does it descend ? (6) A person whose weight is 150 Ib. experiences

what pressure from the elevator during each of the three periods of its motion ?

Ans. (a) 52ft. (6) 75 Ib.
;
150 Ib.; 200 Ib.

8. Equal masses of m Ib. each rest upon two platforms, one of which has

at a certain instant a velocity of a ft. per second upwards and the other a velocity

of b ft. per second downwards. Both platforms have an upward acceleration /.

Compare the pressures of the platforms on the bodies.

9. A bucket containing 112 Ib. of coal is drawn up the shaft of a coal pit

and the pressure of the coal on the bottom of the bucket is equal to the weight of

126 Ib. Find the acceleration of the bucket. Ans 2
8

10. While ascending vertically in a balloon with a velocity v, a man drops a

stone when h ft. above the ground. Find the time required for the stone to fall to

the ground. . v + Vy2 + 2 gh

9
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11. A string which can just sustain a mass of 10 Ib. against gravity is attached

to a mass of 2 Ib. which rests upon a horizontal table. Supposing that friction

is y
1

^ the weight of the body, find the greatest acceleration that can be given to the

body by means of the string.

12. A particle moves in a straight line under a force directed towards the origin

and varying inversely as the third power of the distance. Prove v2 = + 2
,

if k2

x2

is the absolute intensity. If the initial distance and velocity are respectively b and
7.

-, show that the equation of motion is x'
2 = b2 2 kt. Discuss the motion.

b

13. A particle is projected with a velocity v in a medium offering a resistance

proportional to the square of the velocity. Show that the equation of motion may

be written s = -
log (put + 1). Discuss the motion.

fj-

14. Find the equation of motion if the force is a periodic function of the time.

Hint. Assume * Fx = ma cos kt. Then Fx varies from ma to ma with the

period Ans. 'x= cos kt + v t + x .

k k2

15. When is the motion in problem 14 periodic and what is the period ?

Ans. VQ = 0. period = .

k

16. A particle describes a straight line under the action of two forces, one con-

stant and the other an attractive central force proportional to the distance. Show

that the force equation may be written f = /j?y + f, where /u,
and / are constants.

Find the equation of motion and discuss it.

Ans. y = c cos (/xf + v) + -*-
, where c and v are constants of integration.

M2

17. Show that the motion in problem 16 is central motion, the center being at

y = *- and attracting directly as the distance, (a) What is the period of the
if

motion ? (6) If y = a, v = 0, when t = 0, find the amplitude. Ans. (a) .

M

18. A spring balance is extended ^ in. by a mass of 1 Ib. and the force of the

spring is proportional to the extension. The spring is then pulled downward and

released. Show that the force equation has the same form as in problem 16, namely

<Py
372= 0(1 48 y). What is the period of the vibration?

o_ i

Ans. = sec. nearly.
V48 g

U

* A finite periodic function of the time must have the form A sin (bt + v) or

.4 cos (bt+ v), where A, b, and v are constants.
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19. A particle is acted upon by a center of force which attracts directly as the

distance and moves in a medium resisting directly as the velocity. Show that the

force equation may be written
''

+ 2/x + k*x = 0. Find the equation of motion
... ^ , dt* dt
if n> k.

Ans. x = Ae-n'cos(\/k'* fji
2

1 + v), where A and v are constants of integration.

20. Write the force equation for a particle which is acted upon by an attractive

center of force proportional to the cube of the distance if the particle moves in a

medium offering a resistance proportional to the square of the speed.

21. A central force is attractive and varies as the nth power of the distance.

If the particle starts from rest at the distance a from the center, find the time of

arriving at the center when (1) n 1, (2) n = 3.

Ans. (1)
-

, (2) -^, where n is the absolute intensity.
2 vV VM

22. In example 1, p. 95, show that the velocity approaches ? as t increases
M

indefinitely. Show also that when the particle is projected downwards with this

limiting velocity, the velocity remains constant, and the motion is uniform.

48. Curvilinear motion. Axioms on force action. Concurrent

forces. Three things must be known of a force in order to com-

pletely determine it, namely, its magnitude, its direction, and its

point of application. Forces are therefore not vector quantities in

the sense in which a vector was defined in Chapter III, because the

line of action of a force cannot be moved without changing the

effect of the force. We are, however, familiar from experience
with certain properties of force action which at least suggest
vector properties. In fact, it is evident that if we confine ourselves

to forces acting simultaneously upon a material particle, since at any
instant such forces have the same point of application, magnitude
and direction are now alone significant. Such forces are said to

be concurrent. For these forces vector resolution and composition
have meanings with which we are familiar. These results of ex-

perience we state in the form of axioms.

AXIOM 1. The acceleration produced by the simultaneous

action of any number of concurrent forces is equal to the accelera-

tion which would be produced by their vector resultant.

In other words, any number of concurrent forces may be re-

placed by a single force equal to their vector sum.

AXIOM 2. If a force is resolved along any direction, the accel-

eration due to this componentmay be found by resolving the original

acceleration along that direction.
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For example, given a force F which causes at a given instant

the vector acceleration f in the motion of a material particle of

mass m. Then, by (I),

(1) F=mf.
If now we resolve F and f along any directed line ?, the corre-

sponding components being Fl
and /,, respectively, then /, is the

acceleration caused by Fn and by (I) and Axiom 2, we shall have

That is, the component of a force along any direction equals the mass

times the acceleration along that direction.

49. Curvilinear motion. Suppose a particle moves in a plane
and is acted upon by n forces, Fv F2 , , Fn . By the first

axiom on force action the n forces may be replaced by a single

resultant force F obtained by the vector addition of the individual

forces Fv Fv ,
Fn . By the second axiom on force action the

component of the resultant force F in the direction of the ^T-axis

is equal to the mass times the acceleration in the direction of the

Jf-axis. Similarly, the component of F in the direction of the Y-

axis is equal to the mass times the acceleration in the direction of

the T'-axis. Hence we have the rectangular force equations for

plane motion:
JJT --- W~i*/ -rrt ,- ft ifr x W*> rrr? f u m rm Or

(Hi) dt dt

Fx = mvx ^r, Fy
= mv

tj ^,
where

Fx = sum of ^-components of all forces acting,

Fy
= sum of ^-components of all forces acting.

The equations of motion are obtained by integrating the force

equations.

Equations (III) are the force equations for motion in the XY-

plane. For motion in space of three dimensions the force equa-

tions have the same form, the only difference being that the

additional coordinate z is introduced. See (XII), Art. 37.

The integration of equations (III) introduces four arbitrary

constants. Hence to determine the motion completely we must
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have four conditions. These conditions may be the two coordi-

nates of the initial position (# , y ) and the two components of the

initial velocity (t^, ^).
|.

From the discussion of Art. 40, we know that

the resultant acceleration in any curvilinear motion

is directed towards the concave side of the path

(in special cases along the tangent). This fact

enables us to construct in almost all cases the

beginning of the path. For we may plot the

initial position (# , y ) and draw the initial velocity (since v.^

and v^ are given). Further we may calculate Fx and Fy for the

initial conditions and construct the initial force F
Q

. The path
then starts in the direction of v and is concave in the direction of F^.

ILLUSTRATIVE EXAMPLES

1. Find the equations of motion and the path if Fx = 0, Fy = mg ;
when

t = 0, x = a, y = 0, vx = b, vy = 0.

Solution. The force equations are

Each equation may be integrated separately :

A second integration gives

(3) x = Cit + c3 , y = i gt
2 + c2t + c4.

Substituting the initial conditions in (2) and (3), we find

(2') b = ci, = c2 .

(3') a = c3 ,
= d.

The equations of motion are

x = bt + a, y=% g(*.

Eliminating t, the equation of the path is found to be

The path is a parabola with its axis parallel to the F-axis.

2. A particle of mass m is acted upon by two forces : (1) one in the direction

of the F-axis and equal to mk ; (2) one in a direction making a constant angle a
with the X-axis and equal to mt2

. When t = 0, x = 0, y = 0, v, = a, vy = b. Find

the equations of motion.
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Solution. The x- and y-components of the first force are zero and mk, respec-

tively. The x- and y-components of the second force are mi2 cos and mt2 sin
,

respectively. Hence the force equations are

(1) m = 7w<2 cos, m -^ = mt'2 sin + mk.
d(2 dt2

Integrating once,

dx

dt
'' "

' "'
dt

Integrating a second time,

=
-j>j

t1 cos a + erf + cs ,
(3)

1 .. _ , ^ siu a + J.J2 + c^ + C4<

Substituting the initial conditions in (2) and (3), we find,

(2') a = Ci, b = c2 ,

(3') = c3 ,
= c4 .

Hence the equations of motion are

x = fa f cos a + a, y = yJj t
4 sin a + J to2 + bt.

PROBLEMS

1. Find the equations of motion and the path in each of the following :

(a) Fx mk, Fy ;
when t = 0, y = 0, x = 0, vx a, vv = b.

Ans. x = kt2 + at, y = bt. Parabola.

(6) Fx = mx, Fy
= Q; when t = 0, x =,0, y = 0, vx = a, vy = b.

Ans. x = $ a(ef e~'), y = bt.

(c) Fx = am, Fy = bm
;
when t = 0, x = 0, y = 0, vx = 0, vy = c.

Ans. x = % at2, y = J bt2 + ct. Parabola.

(d) Fx = mx, Fy = my ;
when t = 0, x = 0, y = 0, vx = a, vv = b.

Ans. x = i a(e' e~<), y = J &(e* e~').

(e) Fx = 0, Fy = my ;
when = 0, x = 0, y = a, vx = 1, vy = 0.

.4ns. x = t, y=$a(e' + e~ f

}. Catenary.

(/) Fx= mx, Fy
= my ;

when t = 0, x = a, y = 0, vz = 0, vy = b.

Ans. x = i a(e* + e~'), y = i 6(e' e~'). Hyperbola.

(g} Fz = 0, Fy
= mvy ;

when = 0, x = 0, y = 1, x = 1, vy = 1.

.4ns. x =
, y = e'. Curve y = ez .

(A) J1

,.
= mtJa;

2
, J'j,

=
;
when t = 0, x = 0, y = 0, vx = 1, i?y

= 1.

^Ins. x = log ( + 1), y = . Curve x = log (1 + y).

() Fx = m sin
, .Fj,

= mry
2

;
when t = 0, x = 0, y = 0, vz = 1, i^ = 1.

^Ins. x = sin t, y = logf-
)

\* I

(j) Fx = , J^y
=

;
when = 0, x = 9, y = 9, vx = 3, t>j,

= 2.

-, y = 2 1 + 9. Curve 9 x2 = y
3

.
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(fc) Fx = 0, Fy = mv
;
when t = 0, x = 0, y = 1, vx = 1, D,,

= 0.

.4ns. a: = t,y = -

Catenary.

(I) Fx = ma, .Fy
= m&, J^ = me

;
when = 0, x 0, ?/

= 1, 2 = 2, x = 0,
= 0, t>, = 1. ^ns ^ _ i a(̂ y^^w+i, z = ^ ct -2 + t + 2 .

Parabola in plane ay bx + a.

(m) Fx = 0, *V = > ^ = - Ans. Straight line.

(w) Fx = mx. Fy
= my, Fz 0.

Ans. Helix if initial position is (a, 0, 0) and velocity (0, b, c).

2. Show that the path is necessarily a straight line or a parabola if the force

is constant.

3. A particle is acted upon by two forces : (1) one parallel to the X-axis and

equal to m(t 1) ; (2) one in a direction making an angle of 30 with the X-axis

and equal to m sin t. When t = 0, x = 0, y = a, vx = 6, vy = 0. Find the equations
of motion.

4. A particle is acted upon by two forces : (1) one parallel to the X-axis and

equal to mx
; (2) one in a direction making an angle of 135 with the X-axis and

equal to mk. When t = 0, x = a, y = 0, vx = 0, vy = 0. Find the equations of

motion.

5. Aparticle is acted upon by three forces : (1) one parallel to the I'-axis and

equal to mk2
y ; (2) one parallel to the X-axis and equal to m(f2 t) ; (3) one in

a direction making an angle of 210 with the X-axis and equal to mk*1. When t = 0,

x = 0, y = 0, vx = 0, Vy = 0. Find the equations of motion.

4*^
>.. 6. A particle of mass 12 Ib. is moving in a northeast direction with a

spaed of 6 ft. per second. It is acted upon by two forces, one of 48 poundals

toyJardsthe north, the other of 72 poundals towards the east. Find its position after

the lapse of one second.

7. A particle of mass 10 Ib. is moving towards the north with a speed of 20

ft. per second. It is acted upon by three constant forces : (1) 10 poundals towards

the northeast, (2) 20 poundals towards the east, (3) 15 poundals towards the south.

Find its position and the components of its velocity after the lapse of 3 sec.

8. A particle of mass m free to move in the XF-plane is subject to a force

whose axial components are Fx 16 mx, Fy = 4 my. The initial conditions are

x = 1, vx =0, y = 0, vy = 2, when t = 0. Find the equations of motion and the

equation of the path. Discuss the motion.

9. The axial components of the force causing a plane curvilinear motion are

Fz = mx, Fy
= 4 my. The initial conditions are x = 0, y = 1, vx = 1, vy= 0,

when t = 0. Derive the equations of motion, discuss them, and draw the path.

10. A p'article of mass m moves in the XF-plane under the action of a force

whose axial components are Fx = mx, Fy = my. The initial conditions are

x = 2 a, y = 0, vx = 0, vy = a, when ^0. Derive the equations of motion. Dis-

cuss the motion.

11. Discuss the motion of the particle in problem 10 if the initial conditions are

x 0, vz = a, y = a, vy = 0, when t = 0.
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12. A particle of unit mass moves in the JJ"Y-plane under the action of a force

which is directed always towards the origin, and its magnitude is proportional to the

distance of the particle from the origin, (a) Denoting the magnitude of the force

when the particle is at unit distance by K2
,
find and discuss the equations of motion

if the initial conditions are x = a, y= 0, vx 0, vy = kb, when t= 0. (ft) Prove

that for any initial conditions the path is an ellipse with center at the origin,

(c) Under what initial conditions can the ellipse degenerate into a straight line ?

13. A particle of unit mass moves in the JTF-plane under the action of a repul-

sive force from the origin. The magnitude of the force is proportional to the distance

from the origin, (a) Find and discuss the equations of motion if the initial condi-

tions are x = a, y = 0, vx = 0, vy = &, when t= 0. (&) Prove that, for any initial

conditions, the path is an hyperbola with center at the origin, (c) Under what

initial conditions can the hyperbola degenerate into a straight line ?

50. Intrinsic force equations. In Art. 40, the tangential and

normal components of the acceleration were found. If, then, the

resultant force F, producing a motion in the plane, is resolved at

any instant along tangent and normal, the corresponding com-

ponents being Ft
and Fn, we shall have

(IV)

These equations, being entirely independent of coordinates, are

called the intrinsicforce equations.

The component Fn is directed always towards

the center of curvature. Motion along any plane
curve may therefore be said to be caused by the

simultaneous action of a tangential and a nor-

mal force. The change of motion involved, that

is the change in the vector velocity, may be

explained thus. The resultant tangential force

F
t changes only the speed, that is the magnitude of the vector

velocity. The resultant normal force causes change in direction

of the velocity. If the speed is constant, the resultant tangential
force is zero. If the path is rectilinear, the resultant normal

force is zero.

51. Polar equations. In many problems the use of polar co-

ordinates is advantageous. If all forces causing a motion are re-

solved along and perpendicular to the radius vector drawn to any

point of the path, we shall have, by Art. 41,
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W 133 m
/a

<f V" <ft.

When -F
p
and Fe are given, the equations (1) become simultaneous

differential equations of the second order, from the integration of

which p and 6 are to be determined as functions of t.

By introducing into (1) the radial velocity [

v
p
=

j

and

dff
the angular velocity (&> = -] about the origin, we obtain

\

(V) d

ILLUSTRATIVE EXAMPLE. A particle moves under the action of a force directed

always along the radius vector, the magnitude of the force being inversely pro-

portional to the cube of the distance. Discuss the motion.

Solution. Since the force is radial, we have

(1) F
p =^* ^ = 0.

p3

Hence from the force equations (V) ,

ff>\
(2)

The second of these gives, by integration,

VP 9 M d , n \ n
-rf

- pw2 = -, (p
2
w) = 0.

dt p
3 cK

(3) p
2w = constant, or u =

P

Substituting in the first, we get after reducing, since v
p
=

,

Multiplying both members by 2 ? df
,
and integrating,

dt

(5)
dt

To obtain a simple solution, t assume as one initial condition, when p = a,

VkV
P = Then ci = 0, and (5) becomes

* When p = 1 and m = 1, the force = M- Hence M is the magnitude of the force upon
unit mass at unit distance. It is convenient to call n the absolute intensity of the force,

t For the general case see problem 5 below.
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_ = __,oi = -
.

Evidently k must be positive, that is, since k = p c2
, n must be negative,

and from (2), the force is now an attraction.

The equation of the path is found directly from (3) and (6) . For,

(7\ dj[ _ c_ . jd _ _
j* _ c

dp_

dt p
2

p
2

-y/y p

Integrating, we have,

\/lf v/fr
or also = log c2/, or p = be 0,

c c

by changing the form of the constant of integration. The path is therefore a

logarithmic spiral.

The assumed initial radial velocity [ va = -J mav be interpreted thus. In-
\ a j

tegrating (4) with the assumption that v
p
= when p =<x>

,
we find Ci = 0, and

k VA:
/. t?-

2 = If p = a, this gives v = -
, the value assumed above. That is, the

P
2 a

initial radial velocity is assumed to be that acquired in moving in from infinity.

To find the resultant initial velocity, we have from (7) for initial angular ve-

.-. ve =pw = aw = -, and v 2 = v* + ve
2 =

, + a
= ^-. since

a a'2 a'2 a2

fc = M c2 . Hence v = =
-^, the initial velocity.

a

The discussion leads to the

THEOREM. Given an attractive centralforce varying inversely as the cube of the

distance. Under such a force a particle will describe a logarithmic spiral if pro-

jected in. any direction with a velocity equal to -
, where a is the distance from the

a
center and /a the absolute intensity of the force.

PROBLEMS

1. Show that a particle can move freely in a conic section with focus at the

origin when acted upon by an attractive center of force varying as the inverse

square of the distance.

2. Show that a particle can move freely in a conic section with center at the

origin when acted upon by a center of force varying directly as the distance.

3. Show that a particle can move freely in a circle when acted upon by a con-

stant attractive central force.

4. Show that a particle can move freely in a circle under a center of force di-

rected towards a point on the circumference. Show that the law of the force is the

inverse fifth power of the distance.
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5. Find the general path under a central force varying inversely as the cube of

the distance.

Hint. Integrate equation (5) of the Illustrative Example, p. 106, without

specializing ci.

Ans. k < 0,
- = acos (6 + p\ ;

k = 0, pO = a
;

P \ c }

1 *I a ^0
*>0, - = de ' f c2e T .

P

6. A particle is acted upon by two centers of force, one attractive and the

other repulsive, but of equal magnitude at any point. Show that the path is a

parabola.

7. A particle is acted upon by a central force proportional to the distance and

a constant force. Show that the path is a conic section.



CHAPTER V

WORK, ENERGY, IMPULSE

52. Work. A force is said to do work when its point of appli-

cation undergoes a displacement. The amount of work done by
a constant force is equal to the product of the force and the dis-

placement in the direction of the force. For example, consider

the force of gravity. If a particle of mass m drops vertically

through a distance of h units, the work done by
the force of gravity is mgh units. If the parti-

cle rises vertically a distance of h units, the

work done by gravity is mgh units.* If the

particle slides a distance of s units down a smooth plane whose

inclination is a, the work done by the force of gravity is

mgs sin units, or mgh units, where h = s sin a is the vertical dis-

tance moved through, that is, h is the distance in the direction of

the force. If a = 0, that is, if the particle slides along a hori-

zontal plane, the work done by the force of gravity is zero.

Suppose the particle moves along the straight line OX under

the action of a force directed always along the line, but whose

j> magnitude is variable. The
6 dx b X law of the variation of the force

being known, its value is known for any position of the particle

on the line. The small amount of work dW,^ done by the

force jF, while the particle moves a small distance dx from the

point Pv is approximately equal to F^dx, where F
l

is the value

of the force at the point P^(x = x^). Applying the princi-

ples of the Calculus, Chapter XXX, it is evident that the total

work done by the force F while the particle moves from the point

x = a to the point x = 5, is the definite integral of F with respect

to x from a to b
; that is,

(1) W
* When the work done by a force is negative, it is sometimes said that the particle

dees work against the force.

t dW is called the element of work ; dx, the element of distance.

109
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Suppose the particle moves in a plane under the action of a

resultant force which is variable in magnitude and direction.

Let P
l represent any position of the par-

ticle on the path AB. Let P^O repre-

sent the resultant force in magnitude
and direction. The element of work

dW corresponding to an element of

arc ds is equal approximately to the

value of the force F at P
l multiplied

x
by ds cos 0, where 6 is the angle between

the direction of the force and the tangent to the curve ; that is,

(2) dW=FcosOds.

But F cos 6 = F
t
where F

t
is the tangential component of the

force F.

The total work done by the force F while the particle moves

from an initial position on the path to any other position s is

obtained by integration.

(3) W

But by (II), Art. 32, and (4), Art. 40, we have

W - T?
^X F ^

x
ds y ds

By substitution (3) becomes the work integral :

(I) W= f (Fxdx + Fydy).
, 2/0

An important consequence of formula (I) is the application

to plane motion under a constant force. Let the direction of the

!F-axis agree with the direction of the force. Then Fx= 0, Fy
= F,

and formula (I) becomes

W=

Hence in any plane motion the work done by a constant force is

equal to the product of the force and the distance moved through
in the direction of the force. The work is independent of the path.
For example, if a particle moves on any plane curve the work

done by the force of gravity is equal to mgh where h represents
the vertical distance moved through.
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Dimensions. Since work has been defined as the product of

force by distance, the relation between the derived unit of work
and the fundamental units of mass, distance, and time is given by
the dimensional equation :

Work = mass x length
2

time2

ILLUSTRATIVE EXAMPLES

1. A unit particle describes the parabola y
2 4 a; from x = 1 to x = 4. Find

the work done by the force whose axial components are Fx = 2 my, Fy 0.

Solution. Since m = 1, (I) becomes

W= f
z~4

2ydx = 4
(*

4
Vx dx = fJ z=l Jl

= AA unite.

2. Find the work done by a force whose axial components are

(1) Fx mky, Fy = mkx,

upon a particle moving along the parabola

(2) z2 = 4 + y,

from x = to x = 2.

Solution. The work integral (I) may be obtained as a function of x in the fol-

lowing manner. From (2), y=x2
4, .. dy = 2xdx, and (I) becomes

W= f
2

(-mk (x
2 -4) dx+ mkx 2xdx) = mk f

*

(x
2 + 4) dx = lOf mk.

^0 J

PROBLEMS

1. Show that in polar coordinates work is given by the formula

W=

2. A body whose mass is m falls vertically to the earth's surface from a height

equal to the radius B. Compute the work done by the earth's attraction during

the fall. Ans. \ mgB units.
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3. A body is suspended by an elastic string whose unstretched length is

4 ft. Under a pull
* of 100 poundals the string stretches to a length of 5 ft.

Required the work done on the body by the tension of the string while its length

changes from 6 ft. to 4 ft. . Ans. 200 units.

4. A unit particle describes the circle x2 + y
2 = a2

,
from (0, a) to (a, 0).

Find the work done by the force whose axial components are Fx = ky
2

,
Fy

= kxy.

k
Ans. - a3 units.

5. A particle describes the circle x2 + y
2 = a2 from the point (0, a) to the

point (a, 0). Prove that the work done by the force whose axial components are

Fx = mxy, Fy my2 is zero.

6. Calculate the work in problem 5 if the particle moves from the point

(0, a) to the point (a, 0).

7. A particle describes the circle x2 + y
2 a2 from (0, a) to (a, 0) . Find the

work done by the force whose axial components are Fx my, Fy = my2
.

Ans. ma* (---}.
\4 3]

8. A unit particle describes the curve x = ev e-v from x = to x = 2. Find

the work done by the force whose axial components are Fx = inx, Fv
= 0.

Ans. 2 units.

x2
y'
2

9. A particle of mass m describes the hyperbola ^ j-2
= 1 from the point

(a, 0) to the point (ar , y ~).
Find the work done by the force whose axial com-

ponents are Fx = mx, Fy = my. m

10. The equations of motion of a unit particle are x =
, y = ef

. Compute the

work done by the resultant force during the time from t = to t = 3.

Ans. \ (e
6

1) units.

11. The equations of motion of a particle of mass m are x = log (t +!),?/ = t.

Compute the work done by the resultant force during the time from t = to t = 3.

Ans. | units.

12. A particle describes the parabola x* + y* = az from (0, a) to (a, 0) . Find

the work done by the force whose axial components are Fx kmy, Fy
= kmxy.

Ans.
*^! (5 -a) units.

x2
y'
2

13. A unit particle describes the ellipse -^ + ^ = 1 under the action of a force

whose axial components are Fx = x, Fy
= y. Compute the work done while

the particle moves from (0, 6) to (a, 0).

14. Compute the work done when a particle describes one half of the ellipse

Cf)

p = -, under the action of a force directed always towards the origin and

varying inversely as the square of the distance.

* The law of force for an elastic string is HOOKE'S LAW. The tension of an elas-

tic string is proportional to the extension.
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53. Kinetic energy. A particle is said to possess energy when

its condition is such that it can do work against a force which

may be applied to it. If a particle, acted upon by no forces, has

a velocity v, it will continue to move uniformly in a straight line.

Suppose a force, acting upon the particle, brings it to rest after

moving through a certain distance. The force does work upon the

particle, and the particle is said to do work against the force. A
particle in motion, therefore, possesses energy called kinetic energy.

The kinetic energy of a particle of mass m, moving with velocity

v, is defined as one half the product of the mass by the square of the

speed. That is,

Kinetic energy = | mv
2

.

Dimensions. From the preceding definition it follows that the

derived unit of kinetic energy is expressed in terms of the funda-

mental units of mass, length, and time by the dimensional equation

v . ,. mass x length
2

Kinetic energy = - - =--
time2

Comparison with Art. 52 shows that the dimensions of kinetic

energy are the same as the dimensions of work.

If a particle under the action of a resultant force F moves

along the JT-axis from the initial position X
Q
to any other position

, the work done is given by

(1) W=
(JfJ

Now F mv
,
and by substitution, (1) becomes

ax

*- mvdv.

If v is the velocity at the point # and v the velocity at the

point a;, we obtain by integration of (2),

(3) W= (v*
- V) = i m# - l mv*.

The work is therefore expressed in terms of the kinetic energy
at the final and initial positions of the particle. If the initial

velocity is zero, (3) becomes

W= ^ mv
2
,

and we have proved for rectilinear motion the
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THEOREM. The work done by the resultant force while a particle

startingfrom rest acquires the velocity v is equal to the kinetic energy

of the particle.

If the velocity of a particle changes from the initial value V
Q

to the final value v, equation (3) gives for rectilinear motion the

THEOREM. In the displacement of a particle the work done by
the resultantforce is equal to the difference of the final kinetic energy
and the initial kinetic energy.

Comparison of equations (1) and (3) gives
the energy equation

(II) |^(V2-V0
2
)

for rectilinear motion. When the force F is a

given function of the distance, integration of (II)

leads to an expression for the speed as a function

of the distance.

ILLUSTRATIVE EXAMPLE. Find the velocity of a body fall-

ing froin a distance h from the center of the earth.

Solution. The earth's attraction varies inversely as the square of the distance

from the center. Hence at P where OP = x, we have Fx ,
where k2 is the

absolute intensity. Using the energy equation, the result is

-
x' \x h)

x = OA = h, VQ = 0, when t = 0.

x h

But Fx = mg when x radius of earth = B.

Hence

. _ m = _ TO0, and k2 =

X

When the body reaches the surface, x = 7?, and (1) becomes

h

If the particle falls from an infinite distance (h = oo ), the velocity upon reach-

ing the surface of the earth is \/2 gR. Expressing E and g in miles, we have
oo

R = 4000, g= '-

, and the velocity from infinity is approximately 7 miles per

second.
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If the particle moves along a plane curve from the initial posi-

tion to any other position , where s denotes the length of arc

measured from a fixed point on the curve, the work done upon it

by a force F is given by (3), Art. 52 :

(4) W= fFt
da.

/*o

Now, by (IV), Art. 50, Ft =mv-^-, and by substitution, (4) becomes
as

(5) W= Cmvdv.
/*o

If V
Q

is the velocity at the point , and v the velocity at the

point , we obtain by integration of (5)

(6) W=
| (v

2 -
t; )

= i mv* - l mv*.

Equation (6) shows that the preceding theorems, p. 114, hold

also for plane curvilinear motion.

Comparison of (6) and (I) gives the energy equation for curvi-

linear motion :

(III) (& - vA = C
2 V / /*<!

When the components Fx and Fy are given functions of the

position (#, y), integration of (III) leads to an expression for the

speed as a function of the position.

ILLUSTRATIVE EXAMPLE. A bullet with an initial velocity of 1500 ft. per

second, strikes a target at 1200 yd. distance with a velocity of 900 ft. per second.

Supposing the range of the bullet is horizontal, compare the mean resistance of the

air with the weight of the bullet.

Solution. Denoting the constant resistance of the air by F, we find that the

work done by this force is 3600 F. Hence the work equation gives

-3QOQF= m (v2 -V(A = ^(9002-15002^,2 \ / 2 \ /

whence F = 200 m.

Since the weight = 32 m,

we have
resistance _ 25

weight 4
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PROBLEMS

1. A particle is projected in any direction with the velocity v and then falls

freely under the action of gravity. Find the energy equation.

Ans. v2 v 2 = 2 gh, where h = vertical distance.

2. A particle moves in a circle of radius a under a constant tangential force mf.

Find the energy equation. t,2 _ v z

Ans. aOf= -
(9 = angle moved through).

a

3. Find the energy equation for a force parallel to one axis and proportional

to the distance from the other.

4. With what velocity must a particle be projected from the surface of the

earth in order that it may never return, no force except the earth's attraction being

supposed to act ?

5. A bullet moving with the speed of 1000 ft. per second has its speed reduced

by 100 ft. per second in passing through a plank. How many such planks would

the bullet penetrate ? Ans. 5A.

6. A bullet fired with a velocity of 1000 ft. per second penetrates a block of

wood to a depth of 12 in. Assuming the resistance of the wood to be constant,

prove that if fired through a board 2 in. thick, its velocity would be reduced by
about 87 ft. per second.

7. A laborer has to send bricks to a bricklayer at a height of 10 ft. He
throws them up so that they reach the bricklayer with a velocity of 10 ft. per second.

What proportion of his work could he save if he threw them so as only just to reach

the bricklayer ?

8. A particle moves under a central attraction proportional to the distance.

Find the energy equation. Ans , k^t _ p^ - v*- V(p.

9. A particle moves under a central attraction inversely proportional to the

square of the distance. Find the energy equation. o k 2k
Ans. = #2 vo

2
.

P Po

54. Constrained motion. Dynamic pressure. The motion of

a particle is said to be constrained when it is confined to a certain

curve or surface ; for example, a bead sliding on a wire, or swing-

ing on a string, or moving on an inclined plane. In constrained

motion, the forces acting upon a particle may be divided into

two classes:* (1) the impressed forces; and (2) the pressure of

the constraint.

Two cases are to be distinguished. (1) On a smooth curve

the tangential component of the force of constraint is zero, that

* The difference between the impressed forces and the force of constraint is that

the former are given directly, while the latter is not given directly, but its effect upon
the motion is specified.
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is, there is no friction. (2) On a rough curve the tangential com-

ponent of the force of constraint is called the sliding friction.

We suppose, for the present, that the curve is smooth. The case

of a rough inclined plane is treated later, Art. 67.

Making use of the intrinsic force equations, Art. 50, we have

f normal ] f normal }

(IV) T-*T presse
[ force j I J

The impressed forces being known, their normal components are

known ; R, the radius of curvature, may be calculated from the

equation of the path, and v2 may be found from the energy equa-
tion. Hence formula (IV) determines the normal pressure.

The normal pressure is exerted by the path upon the particle.

In many practical problems it is important to know the normal

pressure exerted by the particle upon the path. This is given by

NEWTON'S THIRD LAW OF MOTION. To every action there

is a corresponding reaction, equal in magnitude but opposite in

direction.

The curve exerts a normal pressure on the particle. Hence
the particle exerts a pressure equal in magnitude but opposite in

direction on the path. In the case of a bead sliding on a surface,

this is called the dynamic pressure. In the case of a particle

swinging on a string, it is the tension in the string. From (IV)
we obtain

f dynamic 1 f normal
(V) \ pressure [

=
\ impressed [

mv~

n
on path j I force J

The motion is said to be free when the dynamic pressure is

zero.

It must be remembered that normal forces are resolved along the

directed normal. The resultant force, -, acts always towards theH
center of curvature or inwards. If the nor-

mal impressed force acts inwards also, as in

(a), then the dynamic pressure equals numeri- *> (b)

cally the difference of the other two forces. On the other hand,

if the normal impressed force acts outwards, as in (6), then the

dynamic pressure equals numerically the sum of the other forces.

V A
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When v = 0, that is, when the particle is at rest, the pressure
on the path equals the normal impressed force. For this reason,

in this case, the latter is also called the static pressure. The term

-, which gives the change in pressure due to the motion, isR
commonly called centrifugal force. From (IV) this force is equal
and opposite to the resultant normal force and acts always out-

wards. *

In terms of static pressure and centrifugal force, equation (V)
may be written

dynamicIf static 1 f centrifugal 1

pressure J 1 pressure I 1 force J

Since the centrifugal force acts always outwards, it follows that

the dynamic pressure is numerically equal to the surn or-difference

of the centrifugal force and static pressure according as the latter

is outwards or inwards.

ILLUSTRATIVE EXAMPLES

1. A heavy particle is constrained to move in a smooth fixed semicircle whose

plane is vertical. Find the pressure at the lowest point.

Solution. The impressed force is weight. If the particle falls from P to A, the

work done is mg AM mg (AC MO) =mga (1 cos a), if a is the radius.

Hence, using the energy equation, and assuming the

particle to start from rest at P, we have

(1) mv2 = mga(lcos cc), or v2 = 2 ag(l cos a).

The normal impressed force acting outwards, we ob-

tain for the pressure at the lowest point,

ing +
m̂

mg + 2 mg(l cos )
= mg(S 2 cos ).

a

If the particle starts at the highest point of the semicircle, a =
,
then the pressure

SI

equals 3 mg. That is, the pressure at the lowest point is trebled by the motion. This

increase of the static pressure by motion is a matter of importance. For example,
in a scenic railway the structure must withstand not only the weight of a car and

its occupants, but also the added pressure due to motion. This added pressure

equals the centrifugal force.

* It must be clearly understood that the centrifugal force is not an actual force act-

ing on the particle. It is the reaction of the particle against the normal component of

the resultant force. By the first law of motion the particle tends to move in a straight

line. If it moves in a curved path, centrifugal force is a convenient term to designate

the magnitude of the normal force which must act on a particle of mass m and velocity

v, in order to produce the curvature in the path.B
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2. A heavy particle is suspended from a fixed point by a string of length a. A
horizontal velocity VQ is suddenly imparted to the particle so that it begins to de-

scribe a vertical circle. Determine whether the particle will oscillate or the string

become slack.

Solution. The work done by the impressed

force weight when the particle moves from O to P
is negative and equal to mgy, if OH=y. Here

the energy equation gives

(2)
{I

mv2
\ mvo

-> oo^ = V(f 2 (i\V if.

= mgy, or

The normal impressed force is the component of

the weight along the radius and equals

MO a-
mg cos = mg = mg.

Hence from (V), since the dynamic pressure is in

this case the tension, we get

Tension^
a

n̂ = mg (l -2
a \ a

(3) = mg +
TOC 2 _ 3 mgy
a a

If the particle oscillates, the velocity at the highest point must vanish. From
v 2

(2), if v 2 2 gy = 0, we obtain y = -&- as the corresponding height. Since this

%9
height must be less than a radius, a necessary condition for oscillation is t?o

2 < 2 ag.

If the string becomes slack, the tension must vanish. From (3), if

mg + = 0,

2 i /^f
we have y = + ^ as the corresponding height. This must be less than 2 a,

30

and from V(} "^ afif< 2 a, we get
2< 6 a0 as a necessary condition for the tension

30
vanishing.

Subtracting the two heights found, we obtain

30 ~2g~ 60

Comparison of the inequalities and interpretation of (4) gives the criterion :

If vc
2> 5 ag, the particle describes the whole circle. If 2 < 5 ag and > 2 ag, the

tension vanishes, the string becomes slack and the particle will leave the circle and

fall freely. If v^ < 2 ag, the equation (4) shows that the velocity vanishes before

the tension, hence the particle will oscillate.

3. A particle is attached to the end of a fine thread which just winds around

the circumference of a circle of radius a at whose center there is a repulsive force

varying as the distance and of absolute intensity p. Find the time of unwinding
and the tension at any time.
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Solution. The path is an involute of the given circle. Since the impressed
force acts along the radius vector OP, we have, using polar coordinates,

Hence, by the energy equation, we have

p/p
= I

*/a

= 0.

= J mp. (/>
2 a2

) ,

since the particle is at rest at A where p = a.

(1) .-. =
/ (pa -a3

).

Now introduce properties of the involute. PS is the normal at P, ..
if/
= angle

SOP. Also PS = arc SA. Hence cos ^ = cos SOP = = -. PS = aa. Since
o o o OP O

also OP2 = OS + SP ,
we have

Hence (1) becomes

(2)

p =

Now vp = v cos f = v -
. .-. using (2),

p

(3) tv
-gg = 1> g =v^qvp'-q' < or pap _ =

dt p p Vp2 a2

Integrating, remembering that p = a when = 0, we obtain

(4) Vp2 a2 = VAI er, or also, a = ~^fj.t, [by (2)].
2 ITWhen the string is unwound, a = 2 TT, and hence =

|J
.
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The pressure on the path is the tension. In the figure,

Fn - Fsiu if,
= Fsin POS = F = mw = m/uaa.OP p

Also - = = wtyiaa. Since Fn acts outwards, the tension is the sum of FnE SP
3

and the centrifugal force
;
that is, tension = 2 rrifiaa = 2 m/j?at. Hence the tension

constantly increases and reaches the maximum value 4 m^air.

PROBLEMS

1. A heavy particle slides from rest down a smooth curve. If h is the vertical

height fallen through, prove v2 = 2 gh.

2. A heavy particle falls down an inclined plane whose inclination to the

horizon is . Show that the dynamic pressure is constant and equal to mg cos a.

3. A particle slides down a smooth plane whose inclination to the horizon is

30. What is the velocity when it has traversed a distance of 20 ft. ?

Ans. 25.3 ft. per second.

4. A heavy particle slides on the exterior of a vertical circle. If the particle

is just started at the highest point, show that it will leave the circle and fall freely

after sliding through a vertical height equal to one third of the radius.

5. A heavy particle is constrained to move in a circle under a repulsive center

of force lying on the circumference and varying as the distance. The particle just

starts from rest at the center of force. Find the pressure.

Ans. '!^ where p = distance from center of force and a = radius.
2a

6. A heavy bead is constrained to slide on a smooth wire of the shape given

by one of the following equations (assuming the y-axis vertically upwards). It

starts at the point indicated. Find the pressure at the end point given.

(a) ?/
2 = 4z, start (4,4), end (0,0).

(0,4),



122 THEORETICAL MECHANICS

10. A particle hangs freely from a string of length I ;
it is projected horizon-

tally with a velocity V4 Ig. Find how high it rises before the string becomes slack.

Ans. f I.

11. A weight of 10 Ib. is fastened by a string which passes through a hole jn a

smooth horizontal table to a weight of 1 Ib. which hangs vertically. The first

Weight is-revolving on a table about the hole as center. How many revolutions are

there per minute if the 1 horizontal portion of the string is 15 in. long?

12. A ball is hung by a string in a railway carriage which is rounding a curve

of 1000 ft. radius with a velocity of 30 mi. an hour. Find the inclination of the

string to "the vertical.
' A ns. arc tan

13. A heavy particle is suspended by a string from a fixed point and rotates

in a vertical circle. Show that the sum of the tensions of the string when the par-

ticle is at opposite ends of a diameter is the same for all diameters.

14. A particle falls down a vertical circle, starting from rest at the highest

point. If,
1 when at any point, its velocity be resolved into two components, one

passing through the center, the other through the lowest point of the circle, prove
that the latter is of constant magnitude.

\.

15. A bead is constrained to move on a circular wire and is acted upon by a

central force tending to a point on the circumference and varying inversely as the

fifth power of the distance. Show that the pressure is constant.

16. A body describes a parabola under the action of two equal forces, one

tending to the focus and varying inversely as the distance, the other parallel to the

axis. Show that the speed is constant.

17. A particle is constrained to move on a logarithmic spiral p = ae 6 in a

central field for which the force varies inversely as the cube of the distance. Show.

that the pressure varies inversely as the distance. When is the motion free ?

18. A particle describes a parabola freely under the action of two forces, one

a repulsion from the focus varying as the distance, the other parallel to the axis

and equal in magnitude to three times the former. Show that the initial velocity is

2 poV/I, where p is the distance from the focus and /j.
is the absolute intensity of the

repulsive force.

55. Units of work and energy. Power. Work is the product
of force and displacement. Hence unit work is done when unit

force causes unit displacement. By the energy equation (III),

Art. 53, we infer that unit change in kinetic energy arises when
unit work is done. The unit of energy is accordingly the same

as the unit of work. If scientific units are employed, the unit

of distance is the foot, the unit of force is the poundal, and the

unit of work and energy is called the foot-poundal. If technical
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units* are employed, the unit of force is the pound and the unit

of work and energy is called the foot-pound. Since one pound of

force = g poundals, we have

1 foot-pound = g foot-poundals.

In the French system the unit of distance is the centimeter, the

unit of force is the dyne, and the unit of work is called the erg.

Power. The question of time does. not enter in calculating

the amount of work done. Power is defined as the rate of doing
work. The unit in the English system is the horse power, which

is the equivalent of 550 foot-pounds per second, and in the

French system is the force de cheval, which is the equivalent of

75 meter-kilograms per second.

The relation between the units in the English and French sys-

tems is exhibited in the following table of equivalents:

1 foot-poundal = 4.214(10)
5
ergs.

1 foot-pound = 1.356(10)7 ergs.

1 horse power = 1.014 force de cheval.

PROBLEMS

1. Compute the energy of a body weighing 300 Ib. and moving at the rate

of 16 ft. per second. ^ns . 1200 foot-pounds.

2. A body weighing 10 Ib. is thrown upward against gravity. Compute
the work done upon it by its weight (a) while it rises 10 ft., (6) while it falls

10 ft - Ans. (a)
- 100 foot-pounds ; (6) + 100 foot-pounds.

If the resistance of the air amounts to a constant force of 2 Ib., compute the

work done by it in both cases. Ans. - 20 foot-pounds in each case.

3. If a body of 10 Ib. mass is projected horizontally on a rough plane with

a velocity of 50 ft. per second, how far will it move before its velocity is reduced

to 20 ft. per second, the retarding force due to friction being constantly 5 Ib.?

Ans. 65.2 ft.

* The energy equatjon (III), Art. 53, was derived under the assumption that scientific

units are employed, that is, force is equal to the product of mass by acceleration. If

technical units are used, we have the relation

TT. mass x acceleration
r orce =--

,

g
and the energy equation becomes

Work done = change in kinetic energy = (t>
2 v2 )
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4. A body weighing 10 Ib. falls vertically under gravity against a constant

force of 1 Ib. due to the resistance of the air. How far must it fall in order that

its velocity may change (a) from zero to 20 ft. per second, (6) from 10 ft. per

second to 20 ft. per second ? Ans, (a) 6.9 ft.; (6) 5.2 ft.

5. A mass of 1000 Ib. is moving with a velocity of 2 ft. per second, (a) What
force will stop it in 0.1 second ? (ft) What work is done by the force in stopping it?

Ans. (a) 20,000 poundals; (ft) 2000 foot-poundals.

6. Water is to be lifted 150 ft. at the rate of 5 cu. ft. per second. What
horse power is required ? Ans . 85.2 I-P.

(1 cu. ft. of water weighs 62.5 Ib.).

7. Compare the power of two men one of whom can do 4000 foot-pounds of

work per minute and the other (10)
7
ergs per second.

8. A steam crane lifts 26,280 Ib. 150 ft. in 8 min. What is the horse

Power ? AIIS . is.45 hP.

9. (1) How long will it take a 3 HP engine to raise 12 T. 42 ft. ? (2) From
what depth will a 22 hP engine raise 13 T. in one hour ?

10. The monkey of a pile driver weighing 1000 Ib. is raised 20 ft. and

allowed to fall on the head of a pile which is driven into the ground 1 in. by the

blow. Find the average force exerted on the head of the pile. AnSf 120 tons.

11. A train of 60 T. runs a mile on a level track at constant speed. If the

resisting forces are equivalent to the weight of 8 Ib. per ton, find the work done by
the engine. What must be the minimum \-P of the engine to attain a speed of

20 mi. per hour ? AnSi 1267 foot-tons
;
25.6 HP.

12. Suppose the train of the preceding example has steam cut off and brakes

applied when running 15 mi. per hour. If it stops \ mi. from where the brakes

were first applied, find (1) the mean resistance; (2) the time taken to stop the

train
; (3) the work done by the resisting forces.

Ans. (1) 687.5 Ib.; (2) 2 min.; (3)
- 508.2 foot-tons.

13. A train runs (under the action of gravity) from rest for 1 mi. down a

plane whose descent is one foot vertically for each 100 ft. of its length ;
if the

resistances be equal to 8 Ib. per ton, how far will the train be carried along
the horizontal level at the foot of the incline ? Ans. 1 mi. 1408 yd.

14. In how many hours would an engine of 18 I-P empty a vertical shaft full

of water, if the diameter of the shaft be 9 ft., the depth 420 ft., and the mass of

a cubic foot of water 62.5 Ib. ? Ans. 9.8 hr.

15. The average flow over Niagara Falls is 270,000 cu. ft. per second. The

height of the fall is 161 ft. What horse power could be developed from the falls

if all the energy were utilized ? Ans _ 4,940,000 nearly.

16. A particle has been falling for 40 sec. Find (a) the resultant force

which will stop it in 10 sec.; (ft) in 10 ft. Ans . (a) 4 TO ib .
; (fe) 2560 m Ib.

17. A particle whose mass is 8 Ib., tied to one end of a fine thread, 6 ft. long,

swings in the arc of a semicircle. Find its kinetic energy and velocity as it passes

through the lowest point. Ans 48 foot-pounds ;
8 \/6 ft. per second.
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18. The piston of a steani engine is 15 in. in diameter, its stroke is 2| ft.

long, and it makes 40 strokes per minute. If the mean pressure of the steam is 15

Ib. per square inch, what work is done by the steam per minute and what is the

horse power of the engine ? ^nSi 265,072.5 foot-pounds ;
8.03 HP.

19. What must be the length of the stroke of the piston of an engine, the

surface of which is 1500 sq. in., which makes 20 strokes per minute, so that with a

mean pressure of 12 Ib. on each square inch of the piston, the engine may be of

80 horse power ? Ans 71. ft

20. A hammer weighing a Ib., and moving with a velocity v, strikes a nail.

How far will the nail be driven if it offers a resistance r ? fl?,2

Ans. ^-^- in.

rg

21. The diameter of a piston head is 1 ft., the steam pressure 20 Ib. per square

inch, and the length of the stroke 3 ft. How many strokes per minute must the

engine make to raise 2 cu. ft. of water per second from a depth of 400 ft., assuming
that 0.02 of the energy is lost by friction ? (1 cu. ft. of water weighs 62.5 Ib.)

22. A man who weighs 140 Ib. walks up a mountain path at a slope of 30

to the horizon at a rate of 1 mi. per hour. Find his rate of working in raising his

own weight in horse power.

23. An automobile, weighing 1 T., can run up a hill of 1 in 60 at 8 mi. an

hour. Taking the resistance due to friction as -fo of the weight of the car, find at

what rate it could run down the same hill, assuming the horse power developed by
the engine to remain the same.

24. Assuming that a man in walking raises his center of gravity through a

vertical height of 1 in. at every step, find at what horse power a man is working in

walking at 4 mi. an hour, his stride being 33 in., and his weight 168 Ib.

56. Impulse. A second fundamental equation for rectilinear

motion is obtained by integration of the force equation,

XT dvF = m--
dt

Multiplying both sides by dt, interchanging members, and inte-

grating between the limits t and t' for the time, we obtain

/<
I

Jt
mdv= I Fdt.

The second member is called the time-integral of the force

F. If v
Q
and v' are the values of the velocity for t = t

Q
and

t = t', respectively, then we may write

Xf Fdt,

or, introducing momentum,

(VI) Change in momentum = time-integral of force.
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For a reason now to be explained, the equation (1) is called the

impulse equation. Changing the limits in (1) from t= to t'=t,

it becomes
r*t

Fdt.(2) mv mv
Q
= I j

Jo

In this equation the force F is assumed continuous. As a con-

sequence velocity will necessarily change continuously with the

time; and therefore a force cannot cause a sudden change of

momentum. The phenomenon of sudden changes in velocity,

such as are produced by blows, is, however, frequently observed.

Such changes are said to be caused by impulses or impulsive forces.

That is, impulses cause changes of velocity in a time too short to

be measurable. In this phenomenon the change of momentum,
mV mv, where v and V are respectively the initial and final

velocities, may be observed. For this reason an impulse is said to

be measured by the change of momentum it causes, and in scien-

tific units is set equal to this. That' is, using R for impulse,

(3) R = m V- mv.

This equation may be regarded as a limiting case of the impulse

equation, ,and the latter designation is derived from this fact.

For if F is the mean value of the force F in the time t, we have

r
I Fdt = Ft (Calculus, p. 358). The impulse equation (2) may

t/o

now be written mv mvQ
= Ft.

To apply this to a sudden change in velocity, we may let t

diminish and F increase in such a way that the product Ft re-

mains finite and approaches a limiting value, namely,

limit xf, Tr
f _r\J?t

= mV mv,

F"and v being as before the final and initial velocities. Compar-

ing with the definition (3), we have

p_ limit p*-
e=o J^

that is, from the present point of view, a sudden change in

momentum may be roughly regarded as caused by a very great

force acting for a very small time, and the corresponding impulse
is measured by their product.
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Dimensions of impulse and momentum. Momentum has been

defined (Art. 43) as the product of mass by velocity. Its dimen-

sions in terms of the fundamental units of mass, length, and time*

are expressed by the equation

Momentum ^ ""s x length,
time

From the preceding definition of impulse it is clear that its dimen-

sions are the same as those of momentum.

, 57. Impact. Problems in impact or collision of solids furnish

examples of impulses.

Consider, for example, the impact of a solid elastic sphere

upon an elastic plane surface, the direction of motion being along
the normal to the plane. The phenomena during //
contact may be described as follows :

1. The sphere is compressed until its velocity ^
is zero.

2. The sphere then assumes its original shape
and a certain final velocity.

Obviously, the change in momentum in each

of the two stages described may be regarded as caused by an

impulse, and we shall have by definition, if m is the mass of the

sphere,
R = impulse of compression = mv,

if v is the original velocity, and

R'= impulse of restitution = mi/,

if v' is the final velocity.

Now it -is a fact observed by Newton, that the final and initial

velocities are in a ratio which depends upon the substances in
j

contact, and not upon the velocity of impact. This constant

ratio, called the coefficient of elasticity, we denote by e, and hence

v' = ev, the negative sign indicating reversal in direction. Con-

sequently, the impulses satisfy the relation

:

(4) R'=-eR.

. The coefficient e is less than unity, if the solid and plane sur-

faces are not perfectly elastic. There is accordingly a loss of energy
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by the impact. No exception, however, is here afforded to the

doctrine of the conservation of energy. The accompanying phe-
nomena of heat, light, etc., indicate a transformation of energy

corresponding to the lost energy of motion.

Oblique impact. If the direction of approach be

inclined at an angle to the normal, and if the

sphere and plane are smooth, then no change of

motion occurs along the surface of the plane, and

the preceding discussion applies without change to

the normal components of the velocities. That is,

(5) vn
' = evn , R' = mvn ',. R = mvn , R' = eR.

Since the tangential components (along the plane surface) are

equal, that is, v
t

' = v
t,
we shall have

f 1

(6) tan & =^ = -HL = -tan 0.

If the solids are imperfectly elastic, tan 0' > tan 0, hence 0' > 0,

and the path is bent away from the normal.

ILLUSTRATIVE EXAMPLE. A bullet weighing half an ounce is fired with a

speed of 2000 ft. per second from a rifle weighing 10 Ib. If the rifle kicks back

through 3 in., find the average pressure applied by the shoulder in bringing it

to rest.

Solution. Since the impulse acting upon the gun is equal and opposite to the

impulse acting upon the bullet, we have the relation

mv= m'v',

where i, v and m', v' denote the masses and velocities of the gun and bullet,

respectively. Substituting the values of m, m,' v', we find

v = 2
- ft. per second.

If F denotes the average pressure exerted by the shoulder, we have from the work

equation,

whence
F = s

igs. poundals = 24.42 Ib.

PROBLEMS

1. An arrow shot from a bow starts off with a velocity of 120 ft. per second.

With what velocity will an arrow twice as heavy leave the bow if sent off with

three times the force ? Ans. 180 ft. per second.

2. A ball falls from rest at a height of 20 ft. above a fixed horizontal plane.

Find the height to which it will rebound, e being |, and g being 32. Ans. 11 ft.
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3. A ball falls from a height h on to a horizontal plane, and then rebounds.

Find the height to which it rises in its ascent. Ans. e2h.

4. A ball is projected from the middle point of one side of a billiard table, so

as to strike first an adjacent side, and then the middle point of the side opposite to

that from which it started. Find where the ball must hit the adjacent side, its

length being 6. ^ ng At the Distance - from the end nearest the opposite side.
A T &

6. A rifle weighing 3 Ib. is discharged while lying on a smooth horizontal

table. The weight of the bullet is 2 oz., and it leaves the gun with a velocity of

1400 ft. per second. What is the impulse of the kick ?

6. A man weighing 180 Ib. jumps from a boat weighing 110 Ib. into a boat

weighing 160 Ib. If the boats are initially at rest compare their velocities after

the jump.

7. A ball whose mass is F>\ oz. is moving at the rate of 100 ft. per second

when it is struck by a bat in such a way that immediately after the blow it has a

velocity of 150 ft. per second in a direction making an angle of 30 upward from the

horizontal. Assuming the horizontal velocity to be reversed by the blow, find the

value and direction of the impulse.

8. A shot of 700 Ib. is fired with a velocity of 1600 ft. per second from a

35-T. gun. Find the velocity with which the gun recoils, neglecting the weight of

the powder. If the recoil is resisted by a steady pressure equal to the weight of

10 T., through what space will the gun move ? Ans. 14^ ft. per second
;
115

9
5 ft.

9. A particle falls from a height h upon a fixed horizontal plane. If e be the

coefficient of restitution, show that the whole distance described by the particle

before it has finished rebounding is h "*" e
,
and that the time that elapses is

1 e 1

V-f*
(I 1

10. A smooth elastic ball is projected horizontally from the top of a tower

100 ft. high with a velocity of 100 ft. per second, and after one rebound describes a

horizontal range of 40 ft. Find the coefficient of elasticity. Ans. -fa.

11. Two equal scale pans, each of mass M, are connected by a string which

passes over a smooth peg, and are at rest. A particle of mass m is dropped on one

of them from a height , the coefficient of elasticity being e. Find the velocity of
2 g

the scale pan after the first impact. Ans. (1 + e).
2M + m

12. Show that a billiard ball of any elasticity, struck from any point on the

table, and returning to the same point after impinging against the four sides in

order, describes a parallelogram, with sides parallel to the diagonals of the table.

13. A heavy elastic ball drops from the ceiling of a room and after twice

rebounding from the floor reaches a height equal to one half that of the room.

Show that its coefficient of restitution is v.
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14. A heavy elastic ball falls from a height of n ft. and meets a plane inclined

at an angle of 60 to the horizon. Find the distance between the first two points

at which it strikes the plane. Ans. 2V3 ?ie(l + e).

15. The sides of a rectangular billiard table are of lengths a and b. If a ball

of elasticity e be projected from a point in one of the sides, of length b, to strike

all four sides in succession and continually retrace its path, show that the angle of

projection B with the side is given by ae cot 6 = c + ec', where c and c' are the parts

into which the side is divided at the point of projection.

16. A smooth circular table is surrounded by a smooth rim whose interior

surface is vertical. Show that a ball of elasticity e projected along the table from a

point in the rim in a direction making an angle arc tan A/
--- with the radius
'1+ e + e2

through the point will return to the point of projection after two impacts on the

rim. Prove also that when the ball returns to the point of projection its velocity is

a
to the original velocity as e* : 1.

58. Force-moments in a plane. The discussion of this article

will enable us to work out a second* integration of the force

equations.
dv -, dv _-

Multiply the first of these equations by #, the second by a;, and

subtracting, we get

The second member, xFy yFx,
has a simple geometrical sig-

nificance. If the directed line PQ represents the force whose

axial components are (J^., Fy~)
and whose point of application is

P(x, y), then the coordinates of the point Q are at once seen from

figure a to be (x -f F^ y + Fy), for

* The energy equation, Art. 53, is to be regarded as a first integration of the force

equations. For writing these in the form

mvx ^=Fx,mvy ^=Fv ,

dx y
dy

multiplying the first by dy,, the second by dy, and adding, gives

m(vxdvx + VydVy) Fxdx + Fydy.

Integrating, we obtain

} m(vx
*+ v*)+ C=

j*
(Fxdx +Fydy) .

But v2 = vx
2 + v

y
2

, and hence the result is a form of the equation in question.
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In figure b the area of the triangle OPQ is (Analytic Geome-

try, p. 42)

y

M N W
= l^Fy

-

',
if p is the altitude

(a)

(3) l\x(y + Fy)-y(x

But the area of the triangle also equals
drawn from the origin upon PQ.

(4) .:xFy -yFx =

The product pF is called the moment of the force F with

respect to the origin. The point is called the center of moments.

The perpendicular distance p is called the lever arm. Hence

Force x lever arm =force-moment.

Equation (4) gives the expression for force-moment in ana-

lytic form. That is,

(VII) Force-moment with respect to the origin =xFy yFx ,

where the axial components of the force are (Fx , Fy) and the

point of application is (#, y}.

Sign of force-moment. The area of OPQ is positive when the

order 0, P, Q of the vertices on the perimeter is counter-clock-

wise
; negative, if clockwise.

Hence force-moment is positive

if the force acts to cause posi-

tive rotation (counter-clockwise)
about the point; otherwise,

negative.

Evidently, if
j9
= 0, the force-

moment vanishes, that is, if the

line of action of the force passes

through the center of moments the force-moment vanishes. Force-

moment is unchanged if the point of application is displaced along

Positive Negative
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the line of action, the magnitude and direction of the force re-

maining the same. For F and p in (4) both remain constant if

the point of application is so displaced.

Consider next two concurrent forces

F(F0 Fy) and F'(FX', J7

/), the common point
of application being (x, #). Then, by (VII),

Moment of F= xF
y
- yFx ,

Moment of F' = xF
y

' - yFx'
.

Adding,

(5) Moment of F+ Moment of F' = x(Fy + Fy'~)
- y(Fx + JV).

Let R be the vector resultant of jPand F'. Then the axial

components of R are (Fx + Fx
'

, Fy + Fy'~). The second member
of (5) is therefore the moment of R. Hence

(6) Moment of F+ moment of F' moment of R.

That is, the sum of the force-moments of two concurrent forces is

equal to the moment of their resultant. This principle is general;
it can be extended to any number of concurrent forces and leads

to the important

THEOREM OF MOMENTS. The algebraic sum of the force-

moments of any number of concurrent forces with respect to any
center equals the force-moment of their resultant.

59. Moment of momentum. Consider the first member of (2),

Art. 58. This expression is a time-rate. For it is easily seen that

f
dvy _ dv.\ _d ,

^

dt dt ) dt

Hence the equation (2), Art. 58, takes

the form

,+ ^
(1)

(2) y-y- mvx) = xFy
- yFx .

This result is called the moment equation

for a reason now to be explained.
The expressions mvx,

mv
y
in the first member of (2) are the

axial components of the vector momentum mv. The expression

(3) x mv
y y mvx,

being entirely analogous to

x-F
y -y-Fx ,
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is called the moment of momentum with respect to the origin. The
moment of momentum is of course variable in any general motion,

and is a function of the time. Equation (2) therefore gives the

relation,

(VIII)
Time-rate of change of moment of momentum = force-moment.

In the equations of motion, Fx and Fy are the axial com-

ponents of the complete resultant of all forces acting. Hence in

(YIII) the force-moment is the resultant force-moment (Theo-
rem of Moments).

60. Angular momentum. The expression for moment of

momentum is simple if polar coordinates are used. In the figure,

let p be the perpendicular distance from the center of moments
to the tangent to the path. Then p is the lever

arm of the vector momentum. Hence, by Art.

59,

(1) Moment of momentum = mv -p.

dd
But in the figure, p = psinty = p- p .

Also, since v = , (1) becomes
Cvt

^ON Tif /. ds ndd <>ds dd vdO
(2) Moment of momentum = m p* = mo* = mp* .

dt
^

ds
r

dt ds
r

dt

Now (see Art. 22), mp2 = moment of inertia of the particle

with respect to 0(=7 ), and since = angular velocity = w,

we obtain the result,

(3) Moment of momentum = I a).

If this result is compared with the definition of momentum

(wv), it is seen that moment of inertia corresponds to mass, and

angular velocity to linear velocity. From the introduction of

angular velocity, moment of momentum is often called angular

momentum, and momentum proper, linear momentum. We thus

have the definitions

Linear momentum = mass x linear velocity,

Angular momentum = moment of inertia x angular velocity.
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Moreover, the results of Arts. 44 and 59 give the equations,

(4) Force = (linear momentum) ;

at/

Force-moment = (angular momentum).
at

Integration of the last equation will give the result:

Change in angular momentum = time-integral of force-moment.

This result is to be regarded as a second integral of the force

equation, the other being the energy equation already found.

Comparison should be made with (VI) for

rectilinear motion. In the latter, momentum
has been replaced by angular momentum and

force by force-moment.

/
/

*

O A Jf ILLUSTRATIVE EXAMPLE. As an application, consider

central motion, that is, motion caused by a force con-

stantly directed towards a fixed center 0.

Solution. The force-moment with respect to is zero. Hence, choosing
for origin, (4) gives

mp2 = constant, or p
2 = constant.

dt dt

If is the area of any sector A OP, then

u = \ (p*de, and = p
2- = constant.

J dt
'

dt

The derivative
,
that is, the time-rate of change of the sectorial area J.OP, is

at

called the areal velocity. Hence in any central motion the areal velocity is constant ;

or also the radius vector sweeps over sectors of equal area in equal times.

61. Fundamental equations. The preceding sections have led

to three types of equations, namely:

Rectilinear Motion. Curvilinear Motion.

Force Equation, Force Equations,

Energy Equation, Energy Equation,

Impulse Equation. Moment Equation.

Problems in motion depend for their solution largely upon
these equations, and their application has been seen to be of

fundamental importance. The moment equation will be used in

a later chapter.
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62. Formulas in dynamics of a particle. For convenience

of reference the chief results in connection with the kinetics of a

material particle are collected here. In every case F denotes the

resultant of all forces acting on the particle.

F, = sum of ^-components of all forces.

Fy
= sum of y-components of all forces.

Fg
= sum of z-components of all forces.

F
t
= sum of tangential components.

Fn
= sum of normal components.

Fp = sum of components along radius vector.

Fg
= sum of components perpendicular to radius vector.

Force Equations :

d*x dv,m = m -* =
dt2 dt
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Impulse Equation :

Impulse = mV
'

mv,

initial velocity = v, final velocity = F.

Moments :

Force-moment = xF
v yFx ,

point of application = (x, ?/), center of moments = (0. 0).

Moment Equation :

Force-moment = (angular momentum) = (J o),
at at

IQ
= moment of inertia and a> = angular velocity with

respect to (0, 0).



CHAPTER VI

MOTION OF A PARTICLE IN A CONSTANT FIELD

63. Field of force. A region in which force is known to exist

is called a field of force. A body free to move when placed in

such a field will in general not remain at rest. The acceleration

which will be imparted to a material particle at any point in a

field of force must be regarded as characteristic for the field at

that point. Upon particles of different masses mv mv etc., at the

same point the field will exert different forces. These forces will

have the same direction, but different magnitudes, namely, wi
x/,

m^f, etc., if/ is the acceleration at the point. Consequently, if we
know the acceleration due to a field at each of its points, we know
the force the field will exert upon any material particle. For this

reason a field offorce is said to be determined when the vector accel-

eration at every one of its points is known.

In general the acceleration due to a field of force is different at

different points of the field. When the acceleration is the same at

every point, the field is said to be constant or uniform. A familiar

and important example of a constant field is afforded by consider-

ing the earth's attraction, that is, the force of gravity, in any small

region. All bodies are attracted towards the center of the earth.

Particles falling freely from rest will describe rectilinear paths
which may be regarded as parallel if the region under considera-

tion is small, and experiment shows that the acceleration at every

point of such a region is constant.

64. Rectilinear motion under a constant force. This type of

motion is very important. We consider the motion of a material

-A :
" *

particle along a straight line, the force causing the motion being
directed along that line.

Assume a positive direction and an origin of distance on the

path, and let s denote the distance from the origin to any position
137
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P. The driving force F is then mf or mf, according as its

direction is positive or negative. From the force equation we have

d?s ~ dzsm = m > or

Integrating, using and V
Q
to determine the initial position

and velocity, we derive the result:

The velocity and position of -a material particle moving along a

straight line under a constant.force are given by

(I) = oA S = So +Voi/ 2
,

in which f denotes the constant acceleration, and V
Q and determine

the initial velocity and position, respectively. The positive or nega-

tive sign holds according as the distance andforce have the same or

opposite directions.

The energy equation is

X>Fds = F(s SQ)
= mf(s s ).

Hence if d = 8 = distance moved, this equation gives, by solv-

ing*

(II) t>
2 =V

expressing the final velocity in .terms of the initial velocity and

distance moved.

When the initial velocity is opposed to the force, from (II),

v2 = v 2
2fd, and (I), v = V

Q ft. Hence v = when t =
-^,

and

v 2 *
then d =

^-,
the velocity constantly diminishing until this position

2/
is reached, and thereafter constantly increasing.

Analysis of (I) is important. If V
Q
= S

Q
= 0, then

v = ft, s=lft*, c" Ba 2/,

formulas giving the velocity and distance due to the force only.

To obtain (I) and (II), we add on the initial velocity to get the final

velocity, and the distance (
=

v^t) due to it and the initial distance

to get the total distance.
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ILLUSTRATIVE EXAMPLES

1. Rectilinear motion under gravitation. In this case / = g. We distinguish
two problems.

Particle projected vertically upwards. Taking the upward direction as

positive, and the origin as the point of projection, we have in (I), s = 0, and
obtain

(1) v = v gt, s = vot i gt
2

,

A'
in which v is the velocity of projection. The highest point A is reached

2

when v = 0. Then t = ,
and s = OA = ^_. This is therefore the

greatest height.

Particle falling freely. Choosing the downward direction as positive, we
obtain from (I),

"

(2) v = v + gt, s = so + v t + \ gt
2

.

If the particle falls from rest at the origin, then v = 0, s = 0, and we get

(3) v = gt, s = i gt
2
, t?

2 = 2 gs.

Hence the velocity acquired in falling freely from rest a distance h Q
~

equals V2 gh.

2. Atwood's machine. Let the figure represent two masses mi and m2 sus-

pended by an inextensible thread passing over a smooth pulley.

The motion of the system is known if the motion of one of the

particles m2 is known, that is, if wi2 descends with an accelera-

tion /. In other words, if the acceleration of m2 is /, the ac-

celeration of nil is /. Denoting by T the tension in the

thread, that is, the pull of the particle on the thread, the re-

sultant force acting on m2 is m2g T, and on mi is mig T.

mjt Hence the force equation gives

J w*2<7 T = mzf,

Eliminating Tand solving for/, we find

,_ m2 m1

I

The acceleration is constant and the equation of motion is found by substitution

in (I).

Eliminating / from the force equations,
rwe obtain the tension in the thread,

T = -
g.

ni + n2

PROBLEMS

1. How long will it take a body to fall from rest through 625 ft.? Find the

velocity acquired. How far does it fall in the fourth second ? (g= 32.)

AnSf 2f. gee.; 200 ft. per second; 112 ft.
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2. How long will it take a body to acquire a velocity of 260 ft. per second

falling from rest ? Ans , Y sec.

3. (1) How high will a stone rise which is projected upwards with a velocity

of 256 ft. per second ? (2) What is its position, direction of motion, and velocity

at the end of the tenth second ? (g = 32.)

Ans. (1) 1024 ft. (2) 960 ft. high ; v = 64 ft. per second downwards.

4. Compare the momentum of a 3-lb. weight after falling 30 ft. with that of a

half-ounce bullet having a velocity of 2000 ft. per second. AnSi 24V30 : if*.

5. With what velocity must a body be projected downwards that it may over-

take in 10 sec. another which has already fallen through 100 ft. ?

Ans. 90 ft. per second.

6. A body is projected upwards with a velocity of 80 ft. per second. How
long will it be in returning to the starting place ? With what velocity will it

return? ($r
= 32.) .4ns. 5 sec.

;
80 ft. per second.

7. A particle has an initial velocity of 125 cm. per second, and an acceleration

(1) of 10 cm. per second each second
; (2) of 10 cm. per second each second.

How long will it take in each case to move over 420 cm. ? Explain the results.

Ans. (1) 3 sec. or 28 sec.
; (2) 4 sec. or 21 sec.

8. The velocity of a particle moving in a constant field is a cm. per second

at the end of c seconds, and b cm. per second at the end of (c + 1) sec. What was

the initial velocity and acceleration ? AnSi v = a + (a
-

6)c, / = 6 - a.

9. The sum of the two weights of an Atwood's machine is 12 Ib. The heavier

weight descends through 128.8 ft. in 8 sec. What are the values of each weight?

(g = 32.2.) An8t 6.75 n,., 5.95 ib.

10. A 2-lb. weight carried on a spring balance in a balloon has an apparent

weight of 2.4 Ib. when the balloon is ascending. What is the acceleration of the

balloon ? What should the body weigh if the balloon is descending with an accel-

eration of 10 ft. per second ? AnSf 38-4 ft> per sec .
. ^ lbi

11. A mass of 12 Ib. rests on a smooth horizontal table. A second mass of

1.5 Ib. is attached to the first by means of a cord passing over the edge of the table.

Find the following :

(1) The acceleration of the system. Ans. s ft. per second.

(2) The space described in 3 sec. 16 ft.

(3) The velocity attained at the end of 5 sec. ^Q ft. per second.

(4) The force on the string. ^f* poundals.

(5) The time required for the system to move 120 ft. 3VjJ sec.

12. Two unequal masses are connected by a weightless inextensible string

passing over a smooth peg. What must be the ratio of the masses that the system

may move through 24 ft. in 3 sec. from rest ? Ans . 5 : 7.

13. A train passes another on a parallel track, the former having a velocity of

45 mi. an hour and an acceleration of 1 ft. per second per second, the latter a

velocity of 30 mi. an hour and an acceleration of 2 ft. per second per second. How
soon will the second be abreast of the first again, and how far will the trains have

moved in the meantime ?
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14. A body is dropped from a balloon at a height of 70 ft. from the ground.
Find its velocity on reaching the ground, if the balloon is (a) rising, (6) falling

with a velocity of 30 ft. per second.

15. A stone is dropped into a well, and the sound of the splash reaches the

top after 9 sec. Find the depth of the well, the velocity of sound being 1100 ft.

per second.

16. A body whose mass is 5 Ib.
, moving with a speed of 160 ft. per second,

suddenly encounters a constant resistance equal to the weight of \ Ib., which
lasts until the speed is reduced to 96 ft. per second. For what time and through
what distance has the resistance acted ?

17. A body falls freely from the top of a tower and during the last second of

its flight falls | of the whole distance. Find the height of the tower.

Ans. 100ft.

18. Two scale pans of mass 3 Ib. each are connected by a string passing over

a smooth pulley. Show how to divide a mass of 12 Ib. between the two scale pans
so that the heavier may descend through a distance of 50 ft. in the first 5 sec.

Ans. In the ratio 19 : 13.

19. A string hung over a pulley has at one end a mass of 10 Ib. and at the

other end masses of 8 and 4 Ib., respectively. After being in motion for 5 sec. the

4-lb. mass is taken off. Find how much farther the masses go before they come
to rest - Ans. 29 ft. 9 in. nearly.

20. If the string in an Atwood's machine can bear a strain of only J the sum
a

of the two weights, show that the least possible acceleration is =
. Find the least

ratio of the larger to the smaller weight.

21. A mass m pulls a mass m' up an inclined plane, inclination a, by means
of a string passing over a pulley at the top of the plane. Show that the accelera-

tionis
m - TO>sin

%.m + m 1

22. A mass of 6 oz. slides down a smooth inclined plane, whose height is half

its length, and draws another mass from rest over a distance of 3 ft. in 5 sec. along
a horizontal table which is level with the top of the plane over which the string

passes. Find the mass on the table. _4WS< 4 Ib. 10 oz.

23. A weight P is drawn up a smooth plane inclined at an angle of 30 to the

horizon, by means of a weight Q which descends vertically, the weights being con-

nected by a string passing over a small pulley at the top of the plane. Find the ratio

of Q to P if the acceleration is 9-. Ans. Q P.

24. A juggler keeps three balls going with one hand, so that at any instant two

are in the air and one in his hand. Find the time during which a ball stays in his

hand if each ball rises to a height of a ft.

25. A stone dropped into a well is heard to strike the bottom in t sec. Find

the depth of the well, the velocity of sound being a ft. per second.

Ans. * a*+- L
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26. The two masses of an Atwood's machine are 8 and 10 lb., respectively, and
the string is clamped so that no motion can take place. If the string is sud-

denly undamped, find the change in pressure exerted on the pulley.

27. A mass of 10 lb. resting on a smooth inclined plane, inclination 30, is

connected by a string passing over a pulley at the top of the plane to a mass of

10 lb. hanging vertically. Find the tension in the thread (1) when the weight
on the plane is held fixed, (2) when the hanging weight rests on a support, (3) when
both weights are free to move.

65. Curvilinear free motion. We first prove the

THEOREM. If a free material particle is projected into a constant

field in a direction oblique to the direction of the force of the field,

the path will be a parabola.

Let the acceleration due to the field be f and its direction

opposite to the direction of the J^-axis. The axial components of

the force at any point are

Fx = 0, Fy
= - mf.

Hence the rectangular force equations are

3b3T CL^U

(1)
_ = 0,

J = -/.

Let the initial position be (# , # ), the initial velocity t>
,
and

the angle which V
Q
makes with

the .X-axis a. Then the com-

ponents of the initial velocity

are v cos a and V
Q
sin a, re-

spectively. Integrating
equations (1) and determining

Q j
the constants by the given
initial conditions, we obtain

(2) x = x -f v cos a -
t, y = y^ + V

Q sin a - 1 \f&.

Eliminating , the equation of the path is

(3) y - ya
= tan . (. - <> -

g^ ^
(,- * ),

which is the equation of a parabola with its axis parallel to the

T"-axis. Q. E. D.

The distance moved through in the direction of the force is

(y # ). Hence the energy equation gives

(4) t,2 = tv>
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The applications of the preceding theorem are mainly to prob-
lems of the motion of projectiles near the surface of the earth.

Neglecting the resistance of the atmosphere and the variation of

the force of gravity, the circumstances of the motion are given by

(2) where f = g. If the origin of coordinates is the initial posi-

tion, the JT-axis horizontal, and the positive direction of the

y-axis upwards, the equations of motion are

(III) ac = v cos a t, y = vQ sin a t -
^fft

2
-

and the equation of the path and the energy equation become,

respectively, aJ -y = tanax- 5 5-2 v 2 cos2 a

(IV) V* = V

The projectile reaches its greatest height H when the velocity

in the direction of the T"-axis is zero. Then v
y
= 0, and

v = vx = v cos a. Making these

substitutions in (IV), and setting

y = H, we obtain

2gff= v
Q
2

VQ
Z cos2 a = v 2 sin2 a.

v 2 sin2

(5) .-. H= o

The time of flight T is the time elapsed when the projectile

again reaches the .X-axis. Setting y = in (III), we obtain

= v
Q
sin a t gfi, whence t = (at 0),

or t

2 V sin a

(6)
2 VQ sin a

9

The horizontal range ,R is the intercept OA on the JT-axis, the

value of x when t = T. Setting t = Tin (III), we obtain

2 vn
z sin a cos a vft

2 sin 2 a

(7)

x=vn cosa>T=

P __/

9 y

From (7) it is obvious that the maximum range for a given

velocity of projection results when sin 2 a = 1 or a = 45.
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ILLUSTRATIVE EXAMPLES

1. Find the range on an inclined plane through the origin with an inclination 0.

Solution. The equation of OC is y = tan0-x. Substituting from (III), we

have

or solving,

v sin a t </
2 = tan v cos t

,

2

_ 2 VQ (sin tan 0cos ) _ 2 v sin ( 0)

f COS &

which gives the time when the projectile will strike the plane at C.

Since OG=OMsec0, and OM is

the value of *(= VQCOS t} when t has

the value just found, we readily de-

duce the result,

2 1?
2 cos a sin (

-
0)

O M
The velocity at C is (by IV)

V2 = ,p
2 _ 2 g . MC = v 2 - 2 g OC sin 0.

The angle of impact with the plane, namely, y = T 0, is readily found. For

tan r is the slope of the parabola. Substituting the value of OM(=x) already

found, in this, and reducing, gives

tan 7 =
cos (0 + a) + 2 sin tan cos a

2. Required the elevation in order that the projectile may pass through a given

point, the velocity of projection being a given constant.

Solution. Let the given point be Q(XI, j/i). Since this point lies on the

parabola (IV), we have n
yi = tan an - / , S!

2
,

2 r 2 cos2

from which a must be determined. Since cos2 a = -

lecting gives the equation

(1) gxi
2 tan2 a - 2 v<? x\ tan a + (2 vfyi + gra;i

2
)
= 0,

in which tan is the unknown.
Since the equation (1) has in general two roots, the point Q may be reached in

Y\B

tan2 a + 1
, substituting and col-

A X

two ways. To cover all cases, find the discriminant of (1). Since A
B = 2fl 2

a;i, G Zvfyi + gxi
2

, we have for the discriminant

A = J52 - 4 AC = 4V i
2- 8 vfgxfiji

- 4 ^i4 = 4 a&i
a
(t>

- 2 Vgryi
-

fl

Hence A = if ^ _ 2 ^2^ _ ^2 = o,
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or, omitting the subscripts,

(2) X* =tf-*vy.
9* y

V 2

The locus of this equation is the parabola A'BA, where 0*4 = 2 OB = . This
g

parabola is called the bounding parabola. The final statement obviously is as

follows :

If Q is within the bounding parabola, two parabolic paths pass through it

(A >0 and (1) has real and distinct roots).

If Q is on the bounding parabola, one parabolic path passes through it, and this

will touch the bounding parabola at Q (A = and the roots of (1) are real and

equal) .

If Q is without the bounding parabola, no trajectory passes through it.

Applied to gunnery, the interpretation of the results is as follows : The

region covered by a projectile with a given muzzle velocity is the interior of a parabo-
loid of revolution whose axis is vertical (obtained by revolution of A'BA around

OF). Any point within the paraboloid may be hit in two ways.
In terms of the greatest vertical height h, which can be attained with the

given initial velocity VQ, the equation of the bounding parabola takes a simple form.

The height h is attained when the particle is projected vertically upwards, and is

Substituting this value of Vo
2 in (2), the equation of the bounding parabola becomes

(3) 4 Ay + a;
2 = 4 7*2.

Another convenient form of this equation is obtained by introducing the greatest

horizontal range r. This is found from (7), Art. 65, by putting sin 2 a = 1, whence

(4) r = ^-= 2h,
9

and the equation of the bounding parabola may be written

(5) 2/=A(r2-a;2).
r-

3. A man can throw a ball 100 yd. on a horizontal plane. () Find the

highest point that he can hit on a vertical wall 35 yd. away. (&) If he stands on a

cliff 150 feet high, how far from the base can he throw ?

Solution. Evidently in either case the greatest distance will be the point

where the bounding parabola cuts the given plane. We have r = 100 (yd.), and

hence the equation of the bounding parabola is

(1) 200 y = 10,000 -a;2
.

(a) This parabola will cut the vertical line x = 35 at the height

10000 - 1225=d
200

which is the highest point on the wall that he can hit.

(6) Since the horizontal plane is 50 yd. below the top of the cliff, we substitute

in (1) y = - 50, and find
x _m 4 yd^

which is the greatest distance from the base that he can throw.
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PROBLEMS

1. A gun is fired at an elevation of 30. If the muzzle velocity is 1000 ft. per

second, determine the following : (a) equation of path ; (6) range ; (c) time of

flight ; (d) position of the projectile after 2 sec.; (e) highest point reached.

x 64 ,,, 1000000V3 ,.

Ans. (a) y =--- x2 : (o)- ft. :

V3 3000000 64

(c) Sec.
; (d) x = 1000V3, y = 936

; (e) ft..

>_ Ol)

2. In problem 1 find the magnitude and direction of the velocity and its axial

components after 20 seconds.

Ans. v = 500 \/3 ft. per second
;
v = 140 ft. per second.

3. Discuss the circumstances of the motion in problem 1 : (a) after the pro-

jectile has passed over a horizontal distance x = 5000 ft., (6) when at an elevation

of 1000 ft.

4. A projectile moves subject to the equations x = at
, y = bt \ gt

2
. Discuss

its motion fully.

5. Show that a given gun will shoot three times as high when elevated at an

angle of 60 as when fired at an angle of 30, but will carry the same distance on a

horizontal plane.

6. The range is 300 ft. and the time of flight 5 sec. Find the initial velocity

and the angle of elevation. What is the effect on the range of doubling the initial

velocity ? ^ HS . Vo
_ IQQ ft. per second

;
sin a =|.

7. (a) A boy can throw a stone 75 yd. on a level. How far from the base can

he throw standing at the top of a cliff 150 ft. high ? (&) If the stone is thrown

horizontally and strikes 450 ft. from the base, what is its initial velocity ?

Ans. (a) 25v/

~2lyd.; (&) 60 v"6 ft. per second.

8. The wheels of an engine running at the rate of 40 mi. per hour encounter

a drop of one quarter inch at the rail joint. How far from the joint will the wheels

strike the lower rail ? Ans. Q \/~3 ft.

9. Show that to strike an object at a distance x on the horizontal plane through

the starting point, the elevation must be a or 90 a where a = - sin- 1 S^.- How
2 v 2

do the striking velocities compare in the two cases ?

10. A bicyclist riding a wheel 28 in. in diameter notes that a piece of mud

flying off the top of his wheel has a range of 12 ft. Find the angular velocity of

the wheel and the cyclist's speed per hour.

Ans. u l4j^/~^ rad. per second
; V^V^f mi. per hour.

11. A fountain sends out water horizontally in all directions from a central

point a ft. high, with a velocity of c ft. per second. What is the shape of the water

surface and the equation of a section made by the XF-plane ?

Ans. a;2 + j/
2
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12. A drop of water flies off a grindstone just at the top. The radius of the

stone is 2 ft., and it makes 1.5 revolutions per second. Find the velocity of the

drop and the point at which it strikes the floor 7 ft. below the axis of revolution.

What is the range if the drop flies off at a point such that the angle of elevation

is 60?

Ans. v = 6VltfTV2 ft. Persec.; x = f .ft.; range =
93 ^2 + 8*^27*' + 512

ft>
32

13. Where must the drop of water leave the grindstone in problem 12 in order

to fall squarely on top of it ? In order to fall tangent to the opposite side ?
o

1
/

Ans. cos a -
,
cos =

9 IT2 -8 9?T2

14. An emery wheel, 1 ft. in diameter, bursts into small particles when revolv-

ing 100 times per second. Which particle will fly the farthest, and what is its

initial velocity and range ?

15. Show that the area of a level plane swept by a gun at a height h above the

plane increases proportionally with h, being equal to A + 2hVirA where A is the

area commanded when the gun is at the level of the plane.

16. What must be the elevation a to strike an object 100 ft. above the horizon-

tal plane and 5000 ft. distant, the initial velocity being 12^0 ft. per second ?

Ans. a is given by the equation 9 cos2 a 460 sin a cos a + 25 = 0.

17. An engine can send a stream of water vertically 125 ft. How much of a

vertical wall, distant 200 ft., can the engine wet ? Ans. 45 ft.

18. Show that the area commanded by a gun on a hillside is an ellipse, with

one focus at the gun. Find the area commanded by a gun which has a muzzle

velocity of \ mi. per second, the slope of the hill being 10.

19. Determine the angle of projection so that the area included between the

path and the horizontal plane is a maximum. Find the area.
*

Ans. a 60
;
area =- -^

8 g'
2

20. Determine the elevation if the range on a given inclined plane is a

maximum.

Ans. Direction of projection must bisect the angle between the vertical

and the inclined plane.

21. Show that the range R of a projectile fired from a height h above a hori-

zontal plane with velocity v at an angle a is given by

2 1>
2
(h + R tan a) = gR* sec2 a.

22. A heavy particle descends the outside of a circular arc whose plane is

vertical. Prove that when it leaves the circle at some point Q to describe a

parabola the circle is the circle of curvature of the parabola at Q.

23. From a train moving at 60 mi. per hour a stone is dropped. The stone

starts at a height of 8 ft. above the ground. Through what horizontal distance

does the stone pass before it strikes the ground ? Ans. 44 \/2 ft.

24. If the greatest range down an inclined plane be three times the greatest

range up, show that the plane is inclined at 30 to the horizon.
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^25. Two balls are projected from the top of a tower, each with a velocity of

60 ft. per second, the first at an elevation of 30, and the second at an elevation of

45. They strike the ground at the same point. Find the height of the tower.

Ans. (9

26. The back lines of a tennis court are 78 ft. apart, and the service lines

42 ft. The net is 3 ft. 3 in. high. Find the horizontal velocity of the ball (a) when

it is returned from near the ground at one back line so as to graze the net and

just strike the other back line
; (6) when it is served from a height of 8 feet, grazes

the net, and strikes the service line.

Ans. (a) 86.4 ft. per second
; (6) 170.64 ft. per second.

27. The Norwegian ski jumping contests in February, 1904, took place on a

snow slope at Holmenkollen 186 yards long. The competitors slid down f of the

slope (which was in this part inclined 15 to the horizon) to a ledge, from which

they took off for the jump. Below the ledge the steepness of the slope increased to

24. Supposing that the lip of the ledge was so curved as to give the jumper an

elevation of 6 above the horizon at the take-off, find the speed at the ledge and the

length of the leap.

28. A particle is projected with velocity 2\/a<7 so that it just clears two walls

of equal height a, which are at a distance of 2 a from each other. Find the time

of passing between the walls. fc

Ans. 2 \< .

V

29. A gun is aimed directly at a target suspended to a balloon. Show that the

bullet will strike the target if the latter is dropped at the instant the gun is fired.

30. Show that the greatest range on an inclined plane through the point of

projection is equal to the distance through which a particle could fall freely during
its time of flight.

31. Three bodies are projected simultaneously from the same point in the

same horizontal plane, one vertically, another at an elevation of 30, and the third

horizontally. If their velocities be in the ratio 1:1: V3, show that they are always
in a straight line.

32. A heavy particle is placed very near the vertex of a smooth cycloid having
its axis vertical and vertex upwards. Find where the particle runs off the curve

and prove that it falls on the base of the cycloid at the distance
(

- + V3 }
a

the center of the base, a being the radius of the generating circle.

66. Constrained motion. On account of its fundamental prac-

tical importance, we shall assume the constant field to be the gravi-
tational field. If a particle falls along any smooth path under the

action of gravity, we find the acquired velocity as usual by using
the energy equation.

If v
Q and v are the velocities at A and .B, respectively, the

change in kinetic energy is
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By Art. 52 the work done equals the force times the total dis-

placement in the direction of the force, that is, equals
since the acting force is weight. Hence
we have

,. 2
;

'

from which we find

(1) ,2 =

If we set yQ y = height fallen = A, then (1) becomes

(V) v2 = 2 gh + V-
The final velocity, therefore, depends upon the initial velocity

and the height fallen, and is independent of the path. If V
Q
= 0,

that is, if the body falls from, rest, then

(2) vz = 2ghorv= ^iWgh.

This expression, V2 <?A, is called the speed due to a fall through
the height h.

The time of falling down any smooth curve is, however, not

the same for all curves. Examples appear below.

The intrinsic force equations are useful, and are readily
written down, since the particle is acted upon by two forces only,

weight and the normal pressure Pn of the curve. Hence

(3)

fl ^ ft?)

m - = mv = tangential component of weight,
(tv CIS

V 2

m = Pn + normal component of weight.R

67. Inclined plane. A particle constrained to move along a

straight line oblique to the vertical is said to move along an in-

clined plane. The angle between the in-

clined plane and a horizontal plane is called

the inclination.

mg
Smooth plane. The forces acting on the

particle are weight and the pressure of the

plane. Their resultant F must act along the plane. Taking the

positive direction upwards along the inclined plane, we have

from the figure

(1) F = mg sin a, Pn = mg cos a.
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The particle therefore has an acceleration down the plane equal

to g sin a. Consequently formulas (I) and (II) apply by setting

(2) / = g sin a.

Hough plane. When a particle slides along a rough curve, the

tangential component Pt
of the pressure of the path is called

sliding friction. The following laws characterize this force:

1. The direction of friction is opposite to the direction of

motion.

2. The magnitude of friction in any problem is directly pro-

portional to the magnitude of the normal pressure.

From the second law we have

Friction = P
t
= pPn ,

where /A is a constant called the coefficient offriction.

Hence in the case of an inclined plane,

Friction = p, Pn
= p mg cos a.

Since friction is always opposed to the motion, for the result-

ant acceleration the formulas obviously are

/ = g (sin a + fji
cos a), when the particle is moving up

the plane.

/ = g (sin a ft cos a), when the particle is moving
down the plane.

In either case the acceleration is constant and (I) and (II)

apply.

The expressions (3) are made more compact by introducing
the angle offriction. This is defined as an angle X whose tangent

is the coefficient of friction; that is,

(4) fji
= tan X.

To see the significance of X, consider

a particle at rest upon a rough plane. If

now the plane be tipped so that the in-

clination increases, the particle will even-

tually move. The inclination when the particle is on the point of

moving equals the angle of friction. For at this instant the re-
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sistance of the friction equals the component of weight down the

plane; that is,

( mg sin a = /* mg cos a; or

1 tan a = ft. . . a = X.

Substituting fi
= tan X in (3) gives

f = g sec X sin (a + X), when the particle is moving

up the plane.

f = g sec X sin (a X), when the particle is moving
down the plane.

The numerical value of the coefficient of friction depends upon
the character of the substances in contact, and is determined by

experiment. The value of
//,

is slightly less when the particle is in

motion than when it is at rest but on the point of moving.

(6)

ILLUSTRATIVE EXAMPLES

1. A particle is projected up an inclined plane with the velocity VQ. How far

will it ascend ?

Solution. Since the motion is resisted by a constant force, we have, by the

energy equation, \ mvo
2 = w/s, where s is the distance required. ^~

where /= g sin a or g (sin a -f //.
cos a) according as the

plane is smooth or rough.

2. A heavy particle starts from rest at the top of an

inclined plane. Required the locus of the foot of the

plane if the time of descent is constant and independent
of the inclination.

Solution. Smooth Plane. By (I),

s = \g sin a t
2 = \ gt

2 sin a.

In this equation s and a are

variable. If is the starting point, it is easily seen that

the required locus is a circle having O as the highest point

and a diameter OH=% gt
2

. For s = OQ = OH sin OHQ
= OH sin a = \ gt

2 sin a. The result may also be stated

thus : The time of descent along all smooth chords of
a vertical circle drawn from its highest point is the

same.

Sough Plane. In this case from (I) and (6) Art. 67,

s = % g sec X sin (a X)
2 = \ gt

2 sec X sin (a X).

As before, let the vertical line OH= $ gt*. Lay off the angle HOD = X, and
construct the arc of a circle whose center lies on OD passing through and H.
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This arc is the required locus when the particle descends to the left of OH. For

OD OHsec \ gt
2 sec X. Also

s = OQ = OD sin ODQ = OD sin ( X) = J gt
2 sec X sin (a - X).

If the particle moves to the right, the locus is a

corresponding equal arc.

Line of quickest descent from a point to a given

curve. Given a curve C and a point 0. If a vertical

circle tangent to C and having for the upper ex-

tremity of a vertical diameter is drawn, then OQ is a,

line of quickest descent along all smooth straight lines

from to C. For along OS the time is greater than

down OQ, since the time along OP equals that

along OQ.

PROBLEMS

1. A smooth plane has an inclination of 30. With what velocity must a par-

ticle be projected up the plane, the length of which is 48.3 ft., that it may just reach

the top ? What must be the initial velocity to reach the top in 1 sec.? (g 32.2.)

Ans. v = 16.1VO ft. per second;

VQ
= 53.35 ft. per second.

2. A particle falls from rest down a given inclined plane. Compare the times

of descending the first and second halves. Ans. 1 : V2~ 1.

3. Along what chord of a circle must a particle fall in order to gain half the

velocity which it acquires in falling through the vertical diameter ?

Ans. Chord inclined 60 to vertical.

4. A particle is projected up a smooth plane which has an inclination of 3 in 5

with a velocity of 40 ft. per second. In what time will it come to rest and how far

up the plane will it go ? Ans. ff sec.
; ^ ft.

5. A weight of 10 Ib. falls vertically and draws a 15-lb. weight up a smooth

plane having an inclination of 30. What is the acceleration, pull on the string,

and space fallen through in 10 sec. ? Ans. f = fa g : T = 9 Ib.
; space = 5 g.

6. A railway train is running at the rate of 30 mi. per hour up a grade of

1 in 50. The coupling breaks, cutting loose part of the train. How long will the

detached part continue up the grade, friction being neglected ? What is its position

with respect to the point where the break occurred and what is the direction and

velocity of its motion after 2 minutes ? Ans. 2psec.; i|* ft. per second downhill.

7. With what velocity must a particle be projected down an inclined plane of

length I so that the time of descent shall be the same as that for a free fall through
the height of the plane ? Z h sin

Ans. VQ g-
8. What is the value of g if a given mass descending vertically draws an equal

mass up an incline of 30 a distance of 25 ft. in 2.5 sec.? Ans. g =32.

9. Find the position of a point on the circumference of a circle such that the

time of descent from it to the center shall be the same as the time of descent from it

to the lowest point of the circle.
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10. A particle slides down a smooth plane inclined at an angle of 45 and then

drops into free space. (1) If the particle has a velocity of 20 ft. per second when it

leaves the plane, find the equation of its path. (2) Where will it strike a horizontal

plane 100 ft. below ? (3) What are the axial components of the velocity when
it strikes this plane ? (4) At what point will it cut a vertical line 45 ft. distant

from the plane ? a ->/9
Ans. (3) vz= 10 V2, vy = 10 V2 + - _

; (4) 207 ft. below.
5

11. A train of 100 T. starts on an up grade of 1 in 50 with a speed of 20 mi.

per hour. It is stopped by gravity and the resistance of the brakes in 4 seconds.

(1) What is the coefficient n of the resisting forces ? (2) What is the velocity at

the end of one second ? Ans. (1) u. = .21.

12. Show that the times of descent down all radii of curvature of the cycloid

are equal. 10^
Ans. r = \/^.X 9

13. A heavy particle starts from rest at the top of an inclined plane. Re-

quired the locus of the foot of the plane if the speed at the foot is constant and

independent of the inclination. ns. ^ straight line.

14. Give a construction for finding the line of quickest descent from a fixed

point to a circle in the same vertical plane.

15. A body begins to slide down an inclined plane from the top, and at the

same instant another body is projected upwards from the foot of the plane with

such a velocity that the bodies meet in the middle of the plane. Find the velocity

of projection and determine the velocity of each body when they meet.

Ans. V2 gh ; 0, and V2 yh, where h = vertical height of the plane.

16. A parabola is placed with its axis vertical and vertex upwards. Find the

chord of quickest descent from the focus to the curve.

Ans. The chord makes an angle of 60 with the vertical.

17. Through what chord of a vertical circle drawn from the bottom of the
1

vertical diameter must a body descend so as to acquire a velocity equal to
~

th part

of the velocity acquired in falling down the vertical diameter ?

Ans. If d denote the angle between the required chord and the vertical diam-

eter, cos d = -
.

n

18. A heavy particle is projected up a smooth inclined plane with a velocity of

36 ft. per second. The inclination of the plane is 30 and its vertical height is 20 ft.

It projects into space at the top of the plane. Determine (a) the time in ascend-

ing the plane, (b) the velocity at the top, (c) the equations of the free path.

19. A body is projected up a rough inclined plane with the velocity which

would be acquired in falling freely through 12 ft., and just reaches the top of the

plane. If the inclination of the plane is 60 and the angle of friction is 3.0
3

,
find

the height of the plane. Ans. 9 ft.

20. A body is projected up a rough inclined plane with the velocity 2 g. If the

inclination of the plane is 30 and the angle of friction is 15, find the distance

along the plane which the body will move. Ans. g( V3 -f 1) ft.
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21. A body is projected up a rough inclined plane, inclination a, and the angle

of friction is X. If m be the time of ascending and n the time of descending, show

that (m\
2 _ sin (a - X)

V n J sin (a + X)

'

22. A particle descends an inclined plane. If the upper portion be smooth and

the lower rough, coefficient of friction being p, and if the smooth length be to the

rough length as p : q, show that the particle will just come to rest at the foot of the

plane if /* =^-iJ?tan a ,
where a is the inclination of the plane .

1

23. Two rough planes, coefficient of friction = /*, inclined respectively at angles
a and ' to the horizon, are placed back to back as shown in the figure. Two

masses, m and TO', are placed upon them, being con-

nected by a string passing over a pulley at O. (a) If

TO = m', find the limit of the difference a a', if the

acceleration is zero. (6) If = a', find the limit

of the difference m m 1
if the acceleration is zero.

24. Particles are sliding down a number of wires which meet in a point, all

having started from rest simultaneously at this point. Prove that at any instant

their velocities are in the same ratio as the distances they have traversed.

68. Motion on a smooth circle. Simple pendulum. A heavy

particle is suspended from a fixed point by an inextensible

thread, and swings under the action

of its weight in a vertical circle.

Discuss the motion, neglecting the

weight of the thread and the in-

fluence of the atmosphere.
Let I = length of thread,

A be the initial position

(t = 0) at rest,

P be the position after time t,

s = arc AP.

Then, from the figure,

(1) a=Z(a-0).

Resolving the impressed force mg into tangential and normal

components, we have the intrinsic force equations :

O.

(2).

(3)
- =

i^ = F
t
= mgsin0,

[
normal

\ impressed

[force

f normal )

\ pressure }

= mg cos 6 T,
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where T = tension in the thread, that is, the pull of the particle on
the thread.

The work done by weight when the particle descends from A
to P 1S

mg MN= mgl(cos 6 - cos a) .

Hence, the energy equation gives

(4) ^v
2 = #Z(cos 6 cos ).

The tension in the thread at any instant is given by eliminating
vz from (3) and (4), that is,

(5) T= mg(2 cos a - 3 cos 0) .

The circumstances of the motion are known if 6 is known as a

function of the time.

From (2) ^=^sin0,
J C ^-^ d?S 7^0and from (1) &--'&
Hence, the differential equation for the determination of 6 is

X/->N d2
. q a A

(6)
_ +

|
sm = .

Small amplitudes. The angle a, which is the maximum value

of 0, is called the amplitude of the motion. A simple solution of

(6) results if a and consequently 6 are small. A close approxi-

mation is then found by assuming sin 6=6. Equation (6) then

becomes

(7) +
f,
= 0.

The general solution of (7) is (see 71, Chap. XIV)

(8) 0= Cl cos -J? t + c
z
sin\M t.

V v

The constants of integration c
l
and c

2
are to be determined by

the initial conditions.

When t = 0, 6 =
,

= 0.
at

Hence, c = a, and c
a
= 0, and (8) becomes

2
(9) 0~mmwt.
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From (9), the motion is periodic, the time for a complete oscil-

lation being

(VI) P=2TT IL
\ff

For any given position on the earth's surface g is a constant.

Hence (VI) shows that the period depends only upon the length of

the pendulum. It must be remembered that this formula holds

only when the amplitude is so small that the substitution of the

angle for its sine is within the limit of error.

Any amplitude. To obtain an expression for the period which

is valid for any value of the amplitude, we proceed as follows.

d9
Multiplying equation (6) by -

,
we may integrate each term, ob-

... at
taming

l/W\2 _g c

2\dt) 1

C(

Since = when 6 =
, c = ^cos a, and we may write the

'
'

' C

equation in the form

7d\2

^cos 6 cos ).

*7/l\ ">

S) -sfOdt) l^

It is convenient to set in this equation cos = 1 2 sin2 ^ 0,

cos = 1 2 sin2
|-a. Extracting the square root of both sides,

and taking the negative sign with the radical, since 6 decreases

as t increases, we obtain

At
= -

2<y| Vsin
2
\
a - sin2 0.

The time required for the particle to move from the highest

point (0 = ) to the lowest (0 = 0), which is one fourth the period,
is obtained by integration, namety,

d6

Vsiii2
^-

sin2^0
or

(10) P = 2v C
a dd

ffJ Vsin2 i sin2 i
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The integral in (10) is transformed into a known form by

setting
sin ^ a= k, sin ^ 6 = k sin ^>,

where
(f>

is the new variable. Differentiating, we get

cos ^ Odd = k cos
(f>d(f).

jn _ 2 k cos <j>d<f) _ 2k cos (f>d<f>

cos 1- 6 VTT

Since if 6 = 0, < = 0; =
,

=
, we obtain for (10) the form

a

=4/1 r.
V/ - sn

= sin
-| )

The integral involved here is known as the complete elliptic

integral of the first species and is denoted by K. The integral

evidently is not independent of a. Indicating this dependence

by a subscript, then

(12) -
-,

Values of K may be found tabulated (p. 117) in Peirce's A
Short Table of Integrals (Ginn and Company).

A few values of K are set down here in order to make clear

the dependence of the exact period Pa upon the amplitudes.

Comparing (12) and (VI), we have

PI T> T> W 1 m
_ 2"

7T -ra~-r .^-"~~~^~.

T-^F ~^\~ ~K~

Remembering that P is an approximate
value of the period for small amplitudes, (13)

gives the percentage of error. For example,

when a = 10 this is

= about 4 of 1 %
1.5738- 1.5708 = 30

1.5738 15738

An approximate form of Pa closer than

the value of P is found by writing (11) in the form

a
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Using the Binomial Theorem (1, Chap. XIV) then

(1
- k2 sin2 ()"* = 1 + l &2 sin2 <

- etc.

Substituting and integrating gives

Pa= 4 \Q (- + - k* + terms in W, etcA
^g\*i $

.
J

11 3

Since k = sin - = - + -, if we neglect all powers of a
2 2 48

higher than the second, we obtain

06) A= 2

This formula is useful in practice. Pa may be observed and

the value of P then determined.

69. Motion on a smooth cycloid. The discussion of Art. 68

demonstrates that the period of oscillation of a heavy particle on

a vertical circle depends upon
the amplitude. The question
arises : Does any curve exist upon
which the period of the oscilla-

tions is the same for all ampli-

-^M tudes? The cycloid possesses
k~ '

this property, as will now be

shown.

The equation of the cycloid of the figure is (Calculus, p. 281),

y
(1) x = a arc vers - + V2 ay y*.

We shall show that the time of descent to the lowest point
from rest at A is the same for all positions of A.

The velocity at P is found by the energy equation to be

if 8 is measured from the lowest point. Hence the time from A
to is given by

(3) t = -
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We must now express s in terms of y. To do this, differentiate

(1), which gives
dx 2a

Equation (3) now becomes, by substitution,

(5) t =

This result depends only upon the height of the cycloid and is

therefore the same for all positions of A.

A second demonstration is important. Differentiating (2)
with respect to s, we obtain

(6)
ds ds

Hence by the intrinsic force equations,

Let s be measured from the position of equilibrium 0. Then we

have, from (4),

(7) s=OP= f"^?rfy = 2V2ay. .'.s*=8ay.
Jo v'

y

Differentiating this, we obtain -^ = -
ds 4 a

Hence from (6), we have,

W Te
+ f-^-

The general solution is (see 71, Chap. XIV)

s = c*. cos -\f- t + c* sin -\p- .

2 *a 2*a

The motion is therefore a harmonie curvilinear oscillation about

with the period 4ir\
9

Conversely, it may be shown that the cycloid is the path of a

heavy particle which performs oscillations of equal periods on a
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smooth curve. The oscillations are said to be tautochronous

(equal times) and the cycloid is the only tautochronous curve

when the impressed force is gravity.

70. Seconds pendulum. If the period of a simple pendulum
for small amplitudes at a given locality on the earth's surface

is two seconds, the pendulum is called a seconds pendulum for

that place. Since g varies along the earth's surface, the length of

such a pendulum is necessarily variable, but is about 39.11 inches.

For points without the earth, gravity varies inversely as the

square of the distance from the earth's center. Hence if g' is the

intensity of gravity at a height x above the earth's surface, we
shall have

9'-- or a-* ~

where R = radius of the earth. Hence if Px denotes the period at

the height x, then

(2) ^ =

This formula gives the relation between the periods of the

same pendulum at the earth's surface and at any height x.

For points in the interior of the earth, gravity varies directly

as the distance from the earth's center. Hence, if g' is the in-

tensity of gravity at the distance y below the surface of the earth,

we shall have

(3)

PROBLEMS

1. If 39.11 in. be taken as the length of a seconds pendulum, that is, a

pendulum which makes one full swing in one second, what is the length of the

pendulum which vibrates 25 times per minute ? whose period is f ir ?

2. In what time will a pendulum vibrate whose length is double that of a

seconds pendulum ?

3. A pendulum which beats seconds in London requires to be shortened by
one thousandth of its length if it is to keep time in New York. Compare the values

of gravity at London and New York.

4. What is the length of the seconds pendulum where g = 980 cm. per sec-

ond per second ?
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5. Prove that a seconds pendulum if brought to the height x mi. will lose

about 22 x sec. per day, the radius of the earth being taken as 4000 mi.

6. Find the height at which a pendulum 60 cm. long will beat seconds, taking

the radius of the earth as 4000 mi.

7. The mass of a pendulum bob is 100 gm., and the string is 1 m. long.

What is the kinetic energy when the string makes an angle of 30 with the vertical

if the bob is dropped from a horizontal position ? Ans g.5(10)
6
ergs.

8. A body whose mass is 1 Ib. is suspended from a fixed point by a string 12

ft. long. The string is swung to a position 60 from the vertical and the body re-

leased. Determine the velocity when the body is in its lowest position ;
also when

2 ft. above its lowest position.

9. A clock gains 3 min. per day. How much should the bob be screwed up
or down ? Ans Down by^ of its length.

10. Find the time, to four decimal places, of a half vibration of a pendulum
1 m. long at a place where g = 980.8 cm. per second per second.

11. The seconds pendulum loses 12 sec. per day when carried to a mountain top.

How high is the mountain ? Ans About 2900 ft.

12. Find the time of vibration of a seconds pendulum placed in a mine 1.5

mi. deep.

13. Compare g at two places where the rates of the same pendulum differ by
5 vibrations per hour.

14. A string r ft. long has a mass m attached to the lower end and acts as a

simple pendulum. Find the point in the arc where the pull on the string is the

same as where the pendulum is at rest.

Ans. y = 1 7t, where h is the height from which the pendulum has fallen.

15. A heavy particle oscillates in a complete cycloid from cusp to cusp.

Prove the following properties :

(1) The velocity at any point P
equals the velocity at the lowest point

resolved along the tangent at P.

(2) The time of description of any
arc OP is proportional to the angle

OAO = T. In fact r =JJL . t.

*4 a

(3) If the particle is regarded as rigidly attached to the generating circle, then

the center of the latter moves with constant speed.

(4) The pressure on the curve equals twice the normal component of weight.

(5) The acceleration of the particle is equal to g and is directed towards the

center of the generating circle.

Hint. Use the equations x = a (6 -f sin 0), y = a(l cos 0), the properties in-

dicated in the figure, and the relation R = 2 AQ (R = radius of curvature).

16. In the motion of a particle down a cycloid, prove that the vertical velocity

is greatest when it has completed half its vertical descent.
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17. When a particle falls from the highest to the lowest point of a cycloid,

show that when it has described half of the path, f of the time has elapsed and it

has passed through of the vertical distance.

18. The bob of a pendulum which is hung close to the face of a vertical cliff is

attracted by the cliff with a force which would produce an acceleration / in the bob.

Show that the time of a complete oscillation is 2 r\ ,
where I is the length of

*g'
2 +f*

the pendulum, and find the center of the arc described by the bob.

19. A railway train is moving uniformly along a curve at the rate of 60 mi. per

hour, and in one of the carriages a pendulum, which would ordinarily beat seconds,

is observed to oscillate 121 times in 2 min. Show that the radius of the curve is

very nearly a quarter of a mile.



CHAPTER VII

CENTRAL FORCES

71. Central field of force. A field of force is called a central

field if the direction of the acceleration at every point of the field

passes through a fixed point called the center of force. The accel-

eration may be directed towards the center of force or from it ; that

is, the force may be attractive or repulsive. The magnitude of

the acceleration may vary according to any given law. In the

general case it may depend upon the direction and the distance

from the center and also upon the time. In many practical prob-

lems, however, the magnitude of the acceleration depends only

upon the distance from the center, and we shall confine our atten-

tion to this case. The term central force, therefore, as used here

applies to central fields in which the magnitude of the force de-

pends only upon the distance from the center of force. Let the

origin of coordinates be taken at the center of force and P be

the position of a material particle subject to the force of the field.

Denote the distance OP, which is called the radius vector, by p.

Then the magnitude of the acceleration exerted upon the particle

at P is a function of p,

and its direction is along the line OP, in the positive sense if

the force is repulsive, and in the negative sense if the force is

attractive.

The path of the particle is called the orbit. If the initial

velocity is along the line OP, the orbit is a straight line, since

the force has no component tending to draw the particle out of

the line. If the direction of the initial velocity is oblique to the

line OP, the orbit is a plane curve, since the force has no com-

ponent tending to draw the particle out of the plane determined

by the direction of the initial velocity and the line OP. The
orbit is, then, necessarily a plane curve.

163
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Since the acceleration is directed towards the concave side of

the path we may draw the conclusions : (1) if the orbit is con-

cave towards the center of force, then the force is attractive ; (2)

if the force is attractive, the orbit is concave towards the center of

force.

72. Areal velocity. When a point moves along a curve, its

radius vector is said to generate area. Thus, if the moving point
describes the curve c in the figure from the

point A to the point B, its radius vector gen-
erates the area AOB. The time-rate at which

the radius vector generates area, that is, the

derivative of the area with respect to the time,

is called the areal velocity of the moving
point. By Calculus, p. 377, the differential of area in

polar coor-

dinates is

Hence the areal velocity is given in terms of the angular velocity

by the relation

x-i x dA 1 9 d6 1 9

(1) #"2?* -2^'
To derive an expression for the areal velocity in terms of the

rectangular components of velocity, we proceed as follows. The

rectangular and polar coordinates of a point are connected by
the relations

( x = p cos 6,

\y p sin 0.

Differentiating with respect to t,

dx dp a . a d9=
-f- cos 6 p sin 6

,

Q at at at

dy dp . a . ndQ
-f-sa-J- Sin 6 + p COS V .

dt dt dt

Multiplying the first of equations (3) by sin 0, the second by
cos 0, and subtracting, we get

a dy /i dx dO
cos -^f- sm = p

dt dt dt
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Multiplying by | p and taking account of (2), we have finally

dA

This equation expresses the areal velocity in terms of the

rectangular coordinates and their derivatives with respect to the

time.

73. Law of areas for central forces. Since a central force acts

in the direction of the radius vector, its component perpendicular
to the radius vector is zero. Hence, using polar coordinates, the

differential equations of motion, Art. 51, of a particle of mass

f [dtp fddY]whsa Ku =^p =
\_dt* \<w/J
\d , - nm-

( fP\ = Fe = 0,
dt

where /denotes the acceleration. The second equation gives by
integration

(2) ^=h,
where h is a constant.

Comparing (2) with (1), Art. 72, we have

(3) 2^= h.
dt

Hence the

THEOREM.* In the motion of a particle subject to any central

force the areal velocity is constant.

The constant h, which is twice the areal velocity, is called the

constant of areas.

Integrating equation (3) between the limits t =
t
and t =

2 ,

we have ,

that is, the area generated in any interval of time t
2 ^ is pro-

portional to the length of the interval. In other words, the

radius vector sweeps over equal areas in equal intervals of time.

* Since the law of variation of the force, that is, the function F, does not enter in the

derivation of (3), it is evident that this theorem and the two following theorems in this

article hold also for the general central field of force, that is, when F may depend upon
p, 6, and t.
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From (2),

f4^ d9^_hL
dt p2*

Hence the

THEOREM. In the motion of a particle subject to any central

force, the angular velocity is inversely proportional to the square of
the distance from the center offorce.

The speed of the particle is

ds ds d6

or, substituting the value of from (4),
(tl>

x(->. ds; ds h

Let p denote the perpendicular distance from the origin to the

tangent to the orbit. Then from the figure,

= sin 'Jr = (Calculus, p. 98).
p ds ..

dB

TT ds pPHence = t_.

~x dB p

Substituting this value in (5), we obtain

ds_ h

Hence the
dt P

THEOREM. In the motion of a particle subject to any central

force the speed is inversely proportional to the perpendicular distance

from the center offorce to the tangent to the orbit.

74. Converse of the theorem of areas. Suppose a particle

moves in a plane in such a manner that its radius vector generates

equal areas in equal intervals of time, that is, its areal velocity is

constant. Then j A

and p2r
dt
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Differentiating with respect to ,

(1)
dt\ dt

But the first member of (1) is p times the component of accel-

eration perpendicular to the radius vector ((1), Art. 73). There-

fore the total acceleration is in the direction of the radius vector,

that is, the direction of the acceleration passes always through the

fixed point which is the origin of coordinates. Hence the

THEOREM. If a particle moves in a plane in such a manner

that its areal velocity with respect to a fixed point in the plane is

constant, then the particle is subject to the action of a central field

offorce with the point as center.

75. The energy equation. The energy equation in polar coor-

dinates is, Art. 62,

w= (
- V) = r^

* t/Po, 0o

For central forces -Fe=0, and, under the assumption that the

magnitude of the force depends only on the distance, we may
write,

Jl

and the energy equation becomes

Let the function
/"(/?)

be defined by the equation,

Then - U= C
/Po

Equation (1) may now be written

(2)

The function Vis called the potential function * and the value

of V for any given value of p is called the potential energy of the

* The subject of the potential function and potential energy is treated in Chapter X.
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moving particle. The kinetic energy is ^ mv
2

,
and since the second

member of equation (2) is constant, we have the

THEOREM. The sum of the kinetic energy and potential energy

of a particle free to move in a central field offorce is constant.

Equation (2) is called the vis viva equation. The constant

value of the second member depends upon the problem, that is,

upon the initial conditions. When this has been determined,

equation (2) defines v* (the square of the speed) in terms of U
which depends upon p alone. In physical problems U is a single-

valued function of
/>,

and from (2) the speed is uniquely
determined if the distance from the origin is known. Hence the

THEOREM. In any given problem of the motion of a particle in

a central field of force, the speed depends only upon the distance

from the center of force.

As examples of the application of the preceding theorem consider the following :

(1) One end of an elastic string is fixed at the point 0. To the other end is

attached a particle which moves under the action of the elasticity of the string

(neglecting the friction of the air). Motion is

begun by projecting the particle from a given point

(poi 60) with a given speed VQ. These facts deter-

mine the constant value c of the second member of

equation (2), namely c = ^2- + U(po). Then if a
f

particle passes through a point A in any direction

we can determine its speed vi if we know the dis-

tance OA = pi. Furthermore, if the particle crosses

the circle about with radius OA at any point as

.B, (7, or D in any direction, its speed is the same

as the speed at A, namely vi.

(2) If a small planet or comet revolves in an

ellipse about the sun under the sun's attraction,

which is inversely proportional to the square of the

distance from its center, the speed of the planet

at the distance SA when approaching the sun is the same as the speed at the dis-

tance SA' = SA when receding from the sun. '

76. Circular orbits. The problem of determining the motion

of a particle in a central field of force demands the solution of

the differential equations of motion;

(1)

m\ -A

m-
p\_dt

.

=0.
dt
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Integrating the second equation we have,

(2)
;
,.,

where h is a constant of integration. Let us impose the condition

that the particle shall move around the center^ of force in a circle

of radius a. Then p a and from (2), we get for the angular

velocity,

,QN ^-^
~dt~^'

Substituting this value in the first of the equations (1) gives,

since f = 0,
at2 hz ,., N-

-o =/O),
a3

The value of h thus determined is real if /(a) is negative,
that is, if the force is attractive.

By integration of (3) we obtain

(5)
a" a

Hence a particular solution of the differential equations (1) is

(6)

The constant c is determined if we know the position of the

particle at any given time. For example, if = # when t = 0, we
find c = &Q.

THEOREM. In an attractive central field of force a particle

may move around the center of force in a circle of given radius a.

I / , ^T

The angular velocity o> is constant and equal to -v * -. The

speed is equal to ao>.

ILLUSTRATIVE EXAMPLE. If the acceleration in a centfal field is towards the

center of force and proportional to the distance, the time of describing a circular

orbit is independent of the radius.
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Solution. The acceleration is given by

/-*,
where k is a constant.

Hence the angular velocity in a circular orbit of radius a is

The constant angular velocity u = k is the angle (measured in radians) turned

through by the radius vector in one unit of time. Hence the time required to de-

scribe the complete circle is - units. The time required for the particle to move
rC

completely around its orbit is called the period. The period is constant and equal

77. Differential equation of the orbit. To find the equation of

the orbit of a particle in a central field of force we may integrate
the differential equations of motion and then eliminate t. An-
other method which leads to important results is to first eliminate

, obtaining a differential equation involving p and 6 (or x and
?/),

the integration of which furnishes the equation of the orbit. In

this process it is convenient to use, instead of the radius vector

/>,
its reciprocal u = -. Then

P

dp _ \^du _ 1 dudO
dt~ rf~di~ ~^~d~Q~dt

But from (2), Art. 73,

TT dp 7 du
Hence j

= ~^^ia'
dt du

Differentiating with respect to t and taking account of (2),

^ON
d2

p _ _r d fdu\ _ _ i dzud0_
> ' ~7tft~~ ^1t\tWl~

~
^7^237""

Ci t (* v VLC' I/ /

Substituting the value of from (3) and the value of
CLi/ Ctv

from (2) in the first of the differential equations of motion [(1),

Art. 76], we have
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Or
TT

. 4^ 70 2 /
** **

i \
**

w0*
w
;
=

~ra*

Equation (4) is important for the solution of two problems:

(1) Given the orbit, to determine the law of central force.

(2) Given the law of central force, to determine the orbit.

The solution of the first problem is usually quite simple. From
the equation of the orbit we know u in terms of 0, u = </>(#).

Hence we may compute the first member of (4),

_F
m

Under the assumption that the law of force shall depend only
on the distance, we may find 6 from the equation of the orbit and

substitute its value in (5), obtaining F in terms of p and the con-

stant of areas A. If h is known, the force is uniquely determined.

One exceptional case must be mentioned. The process fails if

the orbit is a circle about the center of force. If u = - and h is
a

given, equation (4) furnishes a value for the intensity of the force

at the distance a from the center, but does not prescribe a law

governing the intensity of the force at any other distance. It

was shown in the preceding article that a circular orbit about the

center is possible for any attractive central force.

ILLUSTRATIVE EXAMPLE. Determine the law of central force if the orbit is the

circle p = 2 a cos 6.

1 GAP ft

Solution. u=- =
,

P 2a
fc

du _ sec tan &

d0~ 2a
d2u _ sec3 + sec tan2 _ sec 9 (2 sec2 1)

dff2 2 a 2 a

Hence = w(8 a2w2 -
1).

Applying (4), we have

Since u = -
,
the final expression for the force is

P

The force is attractive and proportional to the fifth power of the distance.

Hence the
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THEOREM. If a particle describes a circle under the action of a center offorce
on the circumference, the force is attractive and varies inversely as the fifth power

of the distance.

PROBLEMS

1. Assuming that the planets move around the sun in circles, prove Kepler's

Harmonic Law, which states that the squares of the periods are proportional to the

cubes of the distances.

2. A particle describes a circular orbit with angular velocity u about a center

(fr'2im\
F = --

)
Deter-

P I

mine the radius of the circle. A k
-fino. a .

w

3. A particle describes an ellipse with the center of force at one focus. Show
that the force is inversely proportional to the square of the distance.

4. A particle describes an ellipse with the center of force at its center. Show
that the force is proportional to the distance.

Suggestion. The equation of a conic section with center at the origin is

1 -ea cos2 6*

For an ellipse 1 e2> and the force is attractive.

For an hyperbola 1 e2< and the force is repulsive.

5. The orbit is an hyperbola with the center of force at the right-hand focus.

Show that if the particle moves (a) on the right-hand branch of the curve, the force

is attractive and inversely proportional to the square of the distance
; (&) on the

left-hand branch, the force is repulsive and inversely proportional to the square of

the distance.

6. Find the central force under which a particle may describe the orbit given.

(a) the reciprocal spiral p& = a. Ans. F = ~ m
P
3

(6) the logarithmic spiral p = ea6. Ans. F = ~ mh*( a<2 + 1 ) .

P

(c) the lituus p
2 = a2 . Ans. F=- mhz (- -- -} -

\p
a 4 a4

/

(cT) the lemniscate p
2 = a2 cos 2 e. Ans. F = -

P

(e) the cardioid p = a(l + cos 0). Ans. F= -

(/) the limagon p = b a cos 9. Ans. F = mh2
(
& ^ H

)

V P
5

P /

() the four-leaved rose p= a cos 2 0. -4ws. F = mh2
1 f )

V P
5

P
3
/

(A) the three-leaved rose p= a cos 30. ^Ins. F= mh2
{ )

V P
5

p
3
/

(0 the rose p = a cos n0. ^Ins. F = - mh2(^f- ^~ ^V
V p

5
P
8

/
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7. Find the law of central force under which a particle may describe the curve

whose equation is

p
k = a cos k0+ b,

where
, 6, and k are constants.

Ans. F=

The curve in problem 7 includes many of the common curves as special cases.

For example,
when k = 1, a conic with origin at the focus

;

when k = 2, a conic with origin at the center
;

when k = 1, 6^0, the limagon ;

when k = 1, 6 = 0, a circle
;

when k = 2, 6 = 0, the lemniscate.

78. Determination of the orbit when the law of force is known.

When the law of the force is known as a function of the distance
/o,

we may determine the orbit by the integration of equation (4),

Art. 77. The differential equation is linear and of the second

order. The general solution will contain two arbitrary constants.

In general the form of the orbit depends upon the constants of

integration, which depend upon the initial conditions of the

motion. The method of integration of the differential equation of

the orbit depends upon the form of the function _F, that is, upon
the law of force. We shall consider in detail the case of an

attractive force inversely proportional to the square of the distance.

In this case F'= = k2mu2 a,nd the differential equation
of the orbit becomes ^

)F= = k2u2
,m

whence + u =

This is a well-known differential equation of which the solution

(74, Chap. XIV) is

u= -c
l
cos (0 + <?

2) +
Hence

(1)
fc
8

sa , ^ 1 h2

sr**#+*> l ~ ci&
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Equation (1) is the equation of a conic section with focus at the

origin.* The principal axis of the conic makes an angle c
2
*with

TO

the axis of coordinates. The eccentricity is e = c
1

The distance
T 2

p from the focus to the directrix is given by the relation ep = ,

1
*

whence p =
c
i

THEOREM. The orbit of a particle subject to an attractive central

force varying inversely as the square of the distance is a conic section

with focus at the center offorce.

' The special case of the circular orbit is obtained when we
W

select
,
= 0. The radius of the circle is

To determine the type of the orbit, we must find e in terms of

initial distance and the initi

energy equation (Art. 75) gives

the initial distance and the initial speed. Since F =--
, the

C?

=
/

-
/PO

Po

Hence
9 Z-2

(2) VZ - = V 2

from which the result is de'rived that v2 has a constant value

for any particular orbit.

Taking for the equation of the orbit

ep
P =- -

1 e cos#

we find, by differentiation,

dp _ e2p sin dO p
2 sin 6 d6 _ h . Q

^^ ~^ ^' . *
,

. ^^ - - ^_ sin v
^

dt (1 e cos 0)
2

cfa p dt p

( *d6 ,\
since p^ = AL

V *
;

/

* The standard form of the equation of a conic section with focus at the origin is

(Analytic Geometry, p. 173)

1 e cos

This equation takes the form (1) if the polar axis is rotated through an angle c2 .
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Also
dt \dt

e2p
2

Hence ,-^-^ -
1) + ?

(^-
1

).

Since the first member of this equation is constant and inde-
70

pendent of p, we must determine A so that k2 = 0, that is,

ep
W =

epic*. The above equation now becomes

(3) ^
/> p

For the three types of conies, (3) gives :

2&2

parabola e = 1, . . v2 = --
P

ellipse e < 1, a = semi-major axis = *
-,

72/^2 A.. t>
2 = F ---

}.

V/3 aj

"hyperbola e > 1, a = semi-transverse axis, =
g^

,

From these results we see that at a given distance p from the cen-

ter of force the speed in an elliptic orbit is less than the speed in a

parabolic orbit. Also in an hyperbolic orbit the speed is greater

than in a parabolic orbit. When e = 1, then, by (2) and (3), if

2 ft?
V
Q
= 0, then pQ

= oo and v2 = , that is, the speed in a parabolic
P

orbit is the speed which would be acquired by a particle starting

from rest at an infinite distance, or, briefly, the speed from in-

finity. Hence the

THEOREM. The path of a free particle in an attractive central

field of force varying inversely as the square of the distance is an

ellipse, parabola, or hyperbola according as the initial speed is less

than, equal to, or greater than the speedfrom infinity.
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79. Position in the orbit. If the orbit of a particle is given
or has been determined, it remains to determine the position of

the particle in the orbit at any instant. Let the equation of the

orbit be p =/(#). From the law of areas,

whence

(2)

This equation determines the vectorial angle in terms of the

time. Solving for #,

6 = <KO-

If the position at any instant is known, the constant of inte-

gration may be determined and the position at any other instant

may be found.

Since 6 is known as a function of
, this value may be sub-

stituted in the equation of the orbit and p will be expressed in

terms of t: p ^(jT). We may now find the speed at any
instant from the energy equation, or from the third theorem of

Art. 73.

The time T required to describe any given arc from 6 = 6
l

to 6 = #2 may be found from (1) by integration. This gives

or
1 f*

37= /
hj t

This result might have been anticipated from the law of areas.

The integral in (3) is twice the area bounded by the curve and

the radii vectores =
1
and =

2
. The constant h is twice the

areal velocity. Hence (3) may be written

area

areal velocity

For example, if the orbit is an ellipse, the period, that is the

time to describe the complete curve, is

T=
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ILLUSTRATIVE EXAMPLE. A particle describes a logarithmic spiral under a

center of force at the pole. Find the time of describing any arc. Determine the

coordinates and speed in terms of the time.

Solution. The equation of the curve is p = ea9 . From (3),

T = i C
2
e de = ;rrh Jdi 2 ah

From (2), f e***dO = t + cs ,

whence e2a = p
2 = t + ca ,

2a 2a

and 2a0 = Iog2a( + c3).

We may find the speed directly from the relation

2
= (& *?v + p2

/w = ri (&v + ii P
4

(dt) \d0dt) (dt) [?\de) f?J
p

Now, = ae"6 = ap,

dt

"
80. Complete solution of a problem in central motion. We

have seen (Art. 76) that the problem of determining the motion

of a particle in a central field of force demands the solution of a

system of two simultaneous differential equations each of the

second order. The complete solution must contain four con-

stants of integration. For the determination of the constants we

must have four initial conditions, for example, the two coordinates

of position /> ,
# and the two components of velocity f-M , f

-
j\tt/0 \Clt/Q

at the instant t = f . We must be able to express the constants

of integration in terms of the initial conditions.

Given the law of force, and the initial conditions p = a, = /3?

- = 7, = S, when t = 0, to determine the motion completely. The
dt dt

solution of the differential equations of motion (1), Art. 73, is

accomplished by three steps.

I. Integrating the second equation, we have

9 a 6 7

a) ,*_=*.
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II. Integrating the differential equation of the orbit,

Fsn\
(2)

we obtain

(3) P

which is the polar equation of the orbit and involves two constants

of integration.

III. Substituting in (1) the value of p from (3), we have, by

integration,

(4) Cp^dO = F(0)=ht + cy

To determine the four constants of integration (^, cv cv c
3),

we impose the initial conditions.

I. From (1),

(5) h = 2S.

II. To determine Cj and <?
2 , we differentiate (3) with respect

to t,

From (3) and (3'),

(6)

We find c
l
and c

2 by solving the simultaneous equations (6).

III. From (4),

/"7\ ~ IT'/'/ON

When the values of the constants of integration given by (5),

(6), and (7) are substituted in (3) and (4), we have the finite

equations of motion, by which p and are expressed in terms of t

and the given constants.

ILLUSTRATIVE EXAMPLE. A particle is subject to an attractive central force

inversely proportional to the square of the distance
(
F=

)
. Determine the

\ r/
motion completely if p = a, = 0,

^ = 0, =
ft, when t = 0. Discuss the form

(It dt

of the orbit for various values of 6.
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Solution. By (5) the constant of areas is h = a26.

Hence the differential equation of the orbit is

The polar equation of the orbit is (see (1), Art. 78)

fo\ fl*62(o) P =
1-C!0462 COS(0 + C2)

Differentiating (8) with respect to t, we have after simplifying,

/f\\ dp o

Substituting the given initial values in (8) and (9), the equations for the

determination of Ci and Cz become

(10)

= Cia
2
6sinc2.

The solution of (10) gives

a =

Substituting these values in (8), the equation of the orbit becomes

(11) p = _ _

To express in terms of t, we have, from (4),

(12) fpW = f fl

a8&4(**
=a*bt + cs,

J J (1 e cos 0}
2

where e = 1 a362.

Integi-ation of (12) gives

- e l-e

Substituting the initial values of 6 and
,
we find

cs = 0.

Hence is expressed in terms of t by the relation *

2^6ir_^i
l-e2 Ll - e

arctan
e cos 6 VT^2 (\l-e

Equation (11) shows that the orbit is a conic section with focus at the origin.

For various values of the initial angular velocity 6, the following cases occur.

* The solution of this equation for is not simple. For practical purposes it is cus-

tomary to employ infinite series. The student is referred to Moulton's Celestial

Mechanics, Chapter V.
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(1) If ft
2 < , the orbit is an ellipse

a3

(e = 1 a362) with the left-hand focus at the

origin.

(4) If &2 =
, the orbit is a

parabola.

(2) If ft
2 =

,
the orbit is a circle with cen-

ter at the origin.

OP = a= 1, 62 = 1, F = a6 = 1.

(3) If -<62< the orbit is an ellipse
a3 a8

(e = a862 1) with the right-hand focus at the

origin.

(5) If 62> ,
the orbit is an

o3

hyperbola (e = a862 1), with the

left-hand focus at the origin.

(5)
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PROBLEMS

1. Determine the various orbits for the law of inverse cube of the distance,

-__*?
3

*

1
p Ans. When &2 <&2

,
i = a cos (c0 + /3), where c2 = 1- -.
P h2

When k2 = h2
,
- = ae + /3.

P

When k2 >h2,- = ae'0+be-**, where c2 = - 1.

P h2

2. Determine the coordinates and the speed in terms of the time, and the time
of describing any arc when the orbit is the curve given :

(a) the reciprocal spiral p0 = a
;

(6) the curve p = ae~ae + be-e
;

(c) the lituus p
2 = a2

;

(d) the lemniscate p
2 = a2 cos 2

;

(e) the cardioid p = (1 + cos 0);

(/) the limac.on p = b a cos
;

(0) the four-leaved rose p = a cos 2
;

(A) the three-leaved rose p = a cos 3
;

(1) the rose p = a cos nO.

3. When the force is F m(^ + }
show that, if v < A, the general equationV P

:V
of the orbit described has the form

p =

where a, e, and A are constants.

__
,1- ecos (key

4. Show that (if e < 1) the curve in problem 3 may be regarded as an ellipse

whose major axis rotates about the focus with uniform angular velocity

kT
where T is the time required for the particle to completely describe the rotating

ellipse.

5. Show that in the case of a central force the motion along the radius vector

is denned by the equation
dtp _ , _&*
dt2

J
p
3

'

6. A particle is subject to an attractive central force proportional to the

distance (F = mp). Determine the motion completely if p = a, 0, = 0,
(It

[tan
= b tan t,

dt""'
"

Ans. I i _ a2b2_
b2 cos2 + sin2
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7. A particle is subject to an attractive force inversely proportional to the fifth

power of the distance. Determine the motion completely in the two cases :

() P = a,0 = 0,^ = 0,^ = l when = 0.
at at aa

(6) P = a, = 0,
& = 0, ^=_L_, when * = 0.
dt dt -^2 a8

Ans. (a) 6 = t, p a.

(6) 2 8 + sin 2 =
, p = a cos 6.

a2

81. Planetary motion. The law of gravitation. The astron-

omer Kepler (1571-1630) was led to formulate the following

empirical laws of planetary motion, his conclusions resulting from

the study of a great number of observations made by his prede-

cessors and himself.

r->I. The radius vector of each planet with respect to the sun as

origin sweeps over equal areas in equal times.

II. The orbit of each planet is an ellipse with the sun at a focus.

III. The square of the period of revolution is proportional to the

cube of the major semiaxis.

Upon the basis of Kepler's laws Newton proved that the plan-

ets move under the action of a force directed towards the sun,

and varying inversely as the square of the distance, thus. By the

first law the theorem of areas holds, and we conclude, by Art. 74,

that the planets are subject to a central field of force with center

at the sun. There is no evidence that the intensity of the force

of the field is different for different directions, and we assume

that the law of force depends only upon the distance. From the

second law the equation of the orbit is (Analytic Geometry,

p. 173)
p = ~

1 e cos Q

Therefore, since w = -,
P

,

cPu 1
U + J02

= ~~
dv*1

ep

and equation (4), Art. 77, for the determination of the law of force,

gives

(i) r~
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We therefore see that, assuming the force depends only on the

distance, the first two laws of Kepler lead to the conclusion that

any one planet is attracted by the sun with a force inversely

proportional to the square of the distance.

By means of the third law we show that the factor is the
ep

same for all the planets. By Art. 79, the period T= ,

or
h=^j~,

i
2 4 7T 2

(2)
ep

= (Analytic Geometry, p. 185), and (2) becomes
ae

pv)
ri^

A

a3

Since by the third law is constant for all the planets, we

obtain for the law of force,

(3) F=-c-,

where c has the same value for all the planets. From (3) we may
conclude, as did Newton, that the sun exerts upon a planet a force

of attraction which is directly proportional to the mass of the

planet, and inversely proportional to the square of its distance

from the sun.

Law of universal gravitation. It is shown by observations

that laws corresponding to those of Kepler hold for the motion of

the moon around the earth, and also for the motion of every

family of satellites in the solar system. It follows, therefore,

that each satellite is subject to a central force directed towards

the primary, and varying inversely as the square of the distance.

It has been shown also in every case in which the motion of a

comet has been observed that the path is a conic section with the

sun at a focus, and that the law of areas holds. These bodies,

therefore, move under the same law of force as the planets. The
laws of Kepler and the preceding statements concerning satellites

and comets, although of immense importance, are only approxi-
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mately true. The errors are comparatively small, but easily per-

ceptible by observation, and readily explained theoretically upon
the basis of Newton's law of universal gravitation. This is:

every particle of matter in the universe attracts every other particle

with a force which acts in a line joining them, and whose intensity

is directly proportional to the product of their masses, and inversely

proportional to the squares of the distances apart.

Observations show that the orbit of the moon about the earth

is not an exact ellipse. This is due to the fact that its motion is

influenced by the attractions of the sun and every other member
of the solar system. The orbit is approximately an ellipse be-

cause the moon is very near the earth, and the central force

directed towards the earth is much greater than all the other

forces acting. The proper computation shows that Newton's law

accounts for the motions of all the planets and satellites in the

solar system, and not a single fact is known to dispute its truth.

By means of it and the appropriate mathematical processes, we
are able to predict the positions of the planets and satellites many

3'ears in advance. We therefore consider its truth to

be established as far as the solar system is concerned.

Newton's verification that the force which holds

the moon in its orbit is the same as that which makes

an apple fall to the ground is historically important.
To work this out, we need the theorem that the attrac-

tion of the earth upon an exterior object is the same

as if its mass were concentrated at its center. Next

we assume that the attraction of the earth for rela-

tively small masses is the same as if the latter were material par-

ticles. Consider, therefore, the attraction of the earth (a) upon
the moon ; (6) upon a material particle upon its own surface.

liy (3) these are

Mm, 4?r2a3w 1 ^ Mm

where M= mass of earth, wx
= mass of moon, m = mass of par-

ticle, r = mean distance of moon, R = radius of earth, a = major
semiaxis of moon's orbit, T = moon's period, g = acceleration

due to gravity at earth's surface.
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Comparing the values of cM in F
l
and _F

2 , we get from (4)

4 n-2/j 3<^=~
Or,

,, N
#

This value of g is accordingly the condition that the law of uni-

versal gravitation shall hold for the influence of the earth upon
the moon and falling bodies at the earth's surface. The value of

g computed from (5) is, in the C. G. S. system, 975, which com-

pares with the observed value of 981 as closely as is to be

expected under the approximate conditions assumed.



CHAPTER VIII

HARMONIC FIELD

82. Harmonic central field. We begin with the study of free

motion in a central field due to a center of force attracting directly

as the distance. That is, if is the center

of force, then at any point P,

(1) Force = mt? OP,

where &2 is the absolute intensity of the field,

that is, the force on unit mass at unit dis-

tance.

The axial components of F are

Fx = Fcos (x, F)=- Fcos 0, Fy
= Fsin (x, F~)=- Fsin 0,

since (x, F^=ir+6. But cos0 = ---, sin# = -- Hence

we have

(2) Fx =

Consider now the question of the path of a free particle pro-

jected with any velocity into such a field. It is obvious that the

path is a straight line if the initial velocity is along a line of force.

In the general case, however, the path is curvilinear, and we can

at least foresee that it must be everywhere concave towards the center

of force, since the force causing the motion has that direction.

The general statement is contained in the

THEOREM. The path of a free particle in a harmonic central

field is elliptic if it is projected with a velocity .oblique to the lines of

force.

Proof. The force equations in rectangular coordinates reduce

by (2) to

186
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Each equation is harmonic (71, Chap. XIV), and the solutions

may be written

(4) x = c
l
sin kt-\- c

2 cos kt, y = cs sin let + <?
4
cos kt,

in which cv c
2 , c3,

c are constants of integration. The rectangu-

lar equation of the path is obtained from (4) by eliminating t.

We may, however, simplify the problem if we draw the axis of x

through the initial position. Then if t = 0, we have y = 0, and

hence c
4
= 0. We must now eliminate t from

(5) x = c
l
sin kt+ c

2 cos kt, y = c
z
sin kt.

This is readily done by solving the second equation, for sin& and

substituting in the first. The result is, after reduction, found

to be

(6) e *#- 2

which is the equation of a central conic with

center at the origin. But since this conic

must be everywhere concave towards the cen-

ter 0, the locus must be an ellipse. Q. E. D.

Since the rectangular component motions (4) are both periodic

with the same period 2 TT -5- k, the particle completely describes

the ellipse in the time 2 TT -=-
7c, and we have the important

THEOREM. A free particle projected in a central harmonic field

in any direction will describe a periodic orbit whose period depends

only upon the absolute intensity of the field.

ILLUSTRATIVE EXAMPLE. An elastic string AB is fastened at A and the other

extremity is pulled through a ring at B and attached to a heavy particle. The latter

is at rest in the position G. If the particle is now displaced obliquely a small dis-

tance and then projected, determine the motion.

Solution. Let T represent the pull of the string

when the particle is at D. Then, by Hooke's Law

(footnote, p. 112),

(1) T:mg::BD:BC,
since at C the pull and weight are equal. The result-

ant force E is the vector sum of T and mg. The

vector triangle is, however, similar to BDC by virtue

of the proportion (1) and the equality of the angle

at B to that between T and mg. Hence B acts

towards C and is proportional to DC. That is, the

particle moves as if attracted towards C with a force proportional to the distance.

The particle therefore describes a vertical ellipse about C as a center when pro-
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jected from D in the plane BCD in any direction oblique to CD. The period of the

motion is 2 TTJ-
,

if BC = d. For, since M : mg :: DC : BC, we have R = ^-. CD.
* g BC

Hence, if m and CD are unity, the absolute intensity of E is -2- or 2
?
and this

. , B(J d
is &2

.

83. Energy equation. The energy equation in rectangular

coordinates gives, using (2), Art. 82,

y
mk2xdx

f*

= I

e/^o'

mTc^T=
o-

\L
X2 +

if p == distance from center of force.

(I) .-.-t;oa=-*V-p *).

The path (6), Art. 82, is circular, when and only when
c
1
= 0, <?

3
= cv The equations of motion now are, if cz

= c
s
= a,

Since p is now constant and equal to pQ , (I) gives v = t> , that

is, the motion is uniform circular motion.

84. Simple harmonic motion. The path is clearly rectilinear

when the direction of the velocity of projection is along a line of

force. Let 8 be the distance from the origin at

any instant. Then F= mk2
s, and the force

equation is

/"ix d?s
, 72 n

(i) ^ + **-.

that is, the harmonic equation (71, Chap. XIV).
The solution, or equation of motion, may be written

(2) s = a cos (kt + /3),

in which a and /3 are arbitrary constants. The characteristics of

the motion have been discussed in example 3, p. 50.

The following terminology is in common use for simple har-

monic motion.

The attraction F is called the force of restitution, the distance

8 the displacement, and the constant /S, upon which the initial
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position (s = a cos /3) depends, is named the epoch. As already

pointed out, the maximum displacement (=a) is the amplitude,
and the period of the n? otion is

(3) T-iJT.

Since in any given harmonic field the period T is constant, we
2 TT

may write in (2), k = ^
,
and thus obtain the equation of motion

in the standardform

(II) S = cos(^ + p

Frequency. The reciprocal of the period is named the fre-

quency of the vibration. Obviously, the frequency gives the

number of total vibrations (integral and fractional) performed in

unit time.

2 irt
Phase. The extreme position A is reached when^ - + /3 = 0,

o J-

or t = T. Let M be a subsequent position in the path at the

8
time t. Then the elapsed time from A to M is t + -^-T. The

A' O M A

ratio of this interval to a complete period is called the phase; that

is,

/ fi

(4) Phase at the time t = + -

T 2?r

For example, if the phase = ^, the particle is at since a

quarter period has elapsed from A ; if the phase = ^, the position

is A', etc.

Difference in phase. Given the simple harmonic motions with

the same period,

(5) x = a cos ( + x' = a' sin

to determine the difference in phase. We must first write the

second equation in the standard form, thus:

= a
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The respective phases are now (by (4))
' + -

+ and +--

Their difference is accordingly equal to

that is, a constant independent of the time. This gives the result:

If two simple harmonic motions have the same period, their difference

in phase is constant.

ILLUSTRATIVE EXAMPLE. A heavy particle is at rest at on a rough horizon-

tal plane midway between two points C and C'. The extremities of an elastic string

1
^^^^"^^~~ j^C

of length less than OC are attached to C and to the particle, and a like elastic

string is attached to C' and to the particle. The particle is now displaced a small

distance from the position in the direction CC1 and then released
;
determine the

motion.

Solution. Let d = elongation of each string when the particle is at 0. Then

at P, if s = OP, the elongations are respectively d + s, d s. Since the pull of

each string is proportional to the elongation, the force of restitution, towards 0, is

numerically m\(d 4- s) m\(d s) = 2 mXs, where X is a constant factor of propor-

tionality. This is resisted, however, by the friction nmg, where /u is the coefficient

of friction. The resultant force is the difference. The force of restitution must be

written 2 mXs, since its direction is opposite to s. The friction, however, must

remain indeterminate in sign, pmg, since its direction reverses with the change
in direction of the motion. The force equation therefore gives, after division by mt

(D =-2XS ^,

the plus or minus sign being used according as the direction of motion is negative

or positive.

Let the particle be displaced from O to A. Then, for motion to begin, the

force of restitution 2 \m OA must exceed the friction. That is, 2 X A> /*g, or

A D'A"'0 D A" A

OA > $ t*.g -* X. If then the points D and D 1 be marked such that OD = OD' = ^2,
the initial position must be beyond D or D'.

Separating the two cases in (1), we have for motion in the negative direction,

=
7, or + 2

dt2 V 2X
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If in this equation we write s
-^2-

= s', we obtain the harmonic equation

^ - +2 Xs'=0. We therefore have a harmonic oscillation whose center is s = ^- or
dt2

,
2 X

D
;
that is, on the positive side.

The solution of the problem is now clear. The effect of friction is to pull the

center of force in its own direction from O to D or D'. Thus, if motion begins at A,
the particle moves to A', where DA' = DA. The particle next moves to A" such

that D'A' = D'A", etc. We note that friction reduces the amplitude each time by
DD 1 or fig H- A. Motion ceases when an extreme position falls within Z>Z)', in the

figure at A'".

PROBLEMS

1. Integrate the following harmonic equations, under the given conditions :

(a)
<^ X = Q.

) Xo=.2,v =0. Ans. x = 2 cost.
dt'

2

(6)
^y + i y = Q. a = 2, /3=^. Ans. y = 2 cos (2 t + *).
dt2

(c) ^ + 3x = 0; a= 1, /3=-. Ans. x = sin V3 1.

tit &

rPii

(d)
^ + n2

y = ; y = c, v = nc.

(In this problem, w = = angular velocity.) Ans. = a cos -v t.

dt *

(/) + 2^ = 0; ^ = 0, w = A;. ^ws. tf = * sin -
.

d<2 e *0 6

2. Show that each of the following defines a simple harmonic motion, by

writing each in the standard form (II). Find the amplitude, epoch, and period.

(a) x = sint 2cost. .- 1 2
Ans. a = v6 sin/9= --i --

V5 V5
_

a = VlO, sin/3= ---

, ,

VlO VlO

(c) s=2sin^--Y
Ans. s = 2 cos (

-
^ IT).41

(d) s = cos TT 4 sin irf. ^ns. a= V17, sin j3
= ^=, cos)3 .

V17 vT?

(e) 0=5 cos (irt - Y

- sin T -
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(</) x = a\ cos (kt + ft) + a2 cos (kt + /32 ) .

(A) y = bi sin * + 62 sin (to IT) .

/ \

(i) y = sin ^ cos t + sin I t + - 1.

(j )
= ctj cos (nt ft) + (^ cos (nt + /32).

(A) x = ai cos (kt + ft) + a2 cos (to + /32) + a3 cos (to + /33).

(0 3= - COB *-3Bin

(m) a; = 2 sin \ irt cos (| vt a-).

O fC% _v

(n) x = sin - irt 5 cos
(-TT

-- i.

o \o ^2/

e characteristic thing : Tlie functions are sines or cosines and when

occurring together the coefficient of t is the same.

3. Show that

x = i cos (kt + /3i) + 2 cos (kt + 2) + + an cos (kt + )

defines a harmonic motion. What is the period ?

4. Draw the distance-time diagram for each solution of problem 1, and

discuss the figure.

5. Construct the positions of a particle having simple harmonic motion, if the

amplitude is 2, and phase equals $, ^, 2, 1, 1, 1, 2f , 5, ,
1.

6. An elastic string supporting a heavy particle hangs in equilibrium, the

elongation due to the weight of the particle being equal to d. The particle is now

depressed below the position of equilibrium through a distance c greater than d, and

then released. Find the height to which the particle will rise after the string ceases

to be taut. ^ns
c2 - (T

2

2d

7. If the heavy particle in problem 6 be acted upon by an impulse sufficient to

project it downward from the position of equilibrium with the velocity w, find the

maximum extension of the string. , Id
*Ans. a -f- \l~ v

8. Find the velocity of the impulse in problem 7 if the string just resumes its

original length when the particle rises. Ans. Vdff.

9. What is the nature of a field of force due to two centers of equal absolute

intensity and each attracting directly as the distance ?

Ans. A harmonic central field of double intensity whose center is the middle

point of those given.

10. Two material particles act as centers of force attracting as the distance, the

absolute intensity of each equaling the mass of the particle. Determine the nature

of the field.

Ans. A similar field due to the entire mass placed at the center of mass.

11. Generalize problem 10.

12. Find the path under a repulsive center of force, the law of direct distance

still holding as in Art. 82. Ans. Hyperbola.
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13. Two heavy particles of masses m and m', respectively, hang at rest, being

attached to the lower extremity of an elastic thread, whose upper end is fixed.

Supposing the second particle drops off, determine the subsequent motion of the

other. a-

Ans. If the separate particles cause elongations d and ^respectively, and if

I = length of string, the equation of motion is x = I + d + d' cos -v/ t
,
where

x distance of the particle from the fixed point of suspension.

85. Composition of simple harmonic motions in a given field.

Many problems in mechanics depend for their solution upon the

following simple principle.

Consider two simple harmonic motions occurring simultane-

ously on XX' in the given field. Their equations may be written

(1) x
l
= a

x
cos (Jet + fa), #

2
=

2
cos (Jet + fa).

By composition (or addition) we derive from these the motion

whose equation is

(2) z=x
1 + z

z
= a

l
cos (let + fa) + a

z cos (Jet + fa).

But this motion is also simple harmonic with the same center

and period as the components (1). For the equations (1) are

solutions of the harmonic equation,

and their sum is also a solution.

Hence the equation (2) must be in the form

(4) x=acos(kt + P).

In order to find a and ft expand (2) and (4) and compare the

coefficients of cos kt and sin kt. We obtain

(5) a cos ft = a
l
cos fa + 2

cos &y a sin ft
= a

l
sin fa + a

z
sin fa.

Squaring and adding these gives

(6) a2 = af + 2
2 + 2 a

1 2
cos (fa

-
fa) .

This is the amplitude of the resultant motion. Knowing a,

then sin ft and cos ft are given by (5) and hence the epoch can be

found.

The preceding discussion may be generalized and gives the

result :
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The resultant of any number of simple harmonic motions on the

same line in a given field is also a simple harmonic motion in the

same field.

Consider next the composition of simple harmonic motions

in a given field along lines mutually perpendicular. Let these

equations be

(7) x a cos (let + /S^), y = b cos (kt + /32).

The resultant motion is that of the point

(x, y), and, as already proved, the motion is

in general elliptic. The path may, however,

be rectilinear, namely, if the difference in

phase is | or any multiple thereof; that

is, if

(8)
_ an(j hence

2
y32 ,

= a cos (kt + /32)
=

-j-,

we get in (7), by substitution,

(9) x = a cos (Jet + /S2 + WTT

and the path is accordingly a straight line.

This result is important and gives the

THEOREM. Two simultaneous simple harmonic motions along

perpendicular lines in the same field compound into a simple har-

monic motion when the difference in phase is a multiple of one half.

Conversely, any simple harmonic motion in a given plane field

may be resolved in two simple harmonic motions along perpendicu-
lar lines, one of which may be chosen arbitrarily.

Consider finally the composition of simultaneous simple har-

monic motions along oblique lines LU and XX' in a given field.

Let P be any position resulting from

composition of the motions of M along
OX and N along OL. By the theorem,

'

the motion of N along LL' may be re-

solved into simultaneous simple har-

monic motions of M' along OX and N' , r

along OY. But since in the figure

OM" = OM' + OM, the simultaneous simple harmonic motions

of M1 and M compound into a simple harmonic motion of M" .
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Hence the resultant of the motions of M along OX and N along
OL is now compounded of simple harmonic motions along the

perpendicular lines OX and OY> and is therefore an elliptic

harmonic motion in general.

The conclusion of the whole matter may now be stated in the

THEOREM. TJie resultant of any number of simple harmonic

motions having the same center and period is either an elliptic

harmonic motion or a simple harmonic motion.

This theorem finds numerous applications in Physics in connection with elastic

media and the theory of wave motion. By Hooke's Law, any particle of such a

medium, when the stress causing a displacement is removed, performs small oscilla-

tions under the action of a force of restitution proportional to the displacement from

a normal position, and therefore executes simple harmonic motion. The com-

position of such motions is accordingly of importance in studying the effect of simul-

taneous disturbances in such media.

PROBLEMS

1. Find the equation of the resultant of the following simultaneous motions.

In all cases determine the resultant amplitude, epoch, and the difference of phase.

(a) Xi = sin t ; x% = cos t. Ans. x = V2cos (t J^r).

(6) Xi = 2cos
;
x2 = sin

[

t + ?-\- Ans. x = 3cost.

(c) Xi = 2 cos -irt; x2 = sin
(

- vt + -
)

Ans. Difference of phase = .

(d) Xi = cos irt
; 2 = 2 sin (irt -f- XT). Ans. Difference of phase = \.

(e) yi = sin \t ; 2/2
= 2 cos ^ t. Ans. Difference of phase = \.

(/) 2/i
= - cos (| wt + $); t/2 = 2sin(firt + fir).

Ans. Difference of phase = 0.

(fiO %i acoskt; x2 = acosj kt -\ -] Ans. x = acos (kt + -
].

V 3 / \ 3 /

2. Find the equation of motion of the resultant of

Xi = acoskt, X2 = a cos (kt + f TT) , a-g = acos(kt + f ?r). Ans. x = 0.

3. Find the amplitude and epoch of the motion whose equations are

x = a cos (kt + /3), y = b cos (kt + /3).

Ans. Amplitude = Va2 + 62 , epoch = )3.

4. What is the theorem concerning difference of phase when the resultant of

two simple harmonic motions along perpendicular lines in the same field is a uni-

form circular motion ?

Ans. Difference of phase must be an odd multiple of one fourth.

5. Discuss the motion defined by each of the following. Find the equation of

the path in each case, and plot the locus.

(a) x = cost; y = 2sm(t + \ir}. Ans. 4 x2 2 V2 xy + y
2 = 2.
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(6) x = 2 sin t
; y = 3 cos t. Ans. 9 x2 + 4 y* = 36.

(c) SB = sin (i TT< + 4 T) ; 2/
= - cos ( TT). .Ans. x2 + \/2xy + y

2 =
^.

(cZ) x = cos kt
; y = cos (* + f TT). Ans. x'2 + xy + y

2 = f .

6. A heavy particle is suspended from a fixed point by a fine elastic thread

and is hanging at rest. Motion is set up by an impulse imparting a velocity v in

a vertical plane through the thread but inclined at an angle a to the latter. Deter-

mine the motion.

Ans. Simple harmonic, amplitude = v -s- k, where k has same value as before

(Art. 82).

7. If the particle in problem 6 is not originally at rest but performing vertical

vibrations, determine the motion when the same impulse acts upon it when in any

position. Work out the equations of motion by composition.

8. Solve problem 3 by rotating the axes through the angle 6 = tan- 1 -
,
and

show that the new equations of motion are

x' = x cos 6 y sin 6 = Va'2 + b'
2 cos (kt + /3), y' = x sin 6 + y cos 6 = 0.

9. A particle is projected from the point (3, 4) with a velocity v of 30 ft. per
second in the direction given by (UQ, x) = % IT + sin-1 f . The force acting is an

attraction from the origin varying as the distance and in magnitude equaling 1 Ib.

per unit mass at the distance of 2 ft. Discuss the motion.

Ans. Path is 9J y? - 23 xy + 16^ y
2 = 625.

10. Discuss the resultant of two simple harmonic motions on the same line in

a given field if the difference of phase is \ ; | ; ; | ; f .

11. If the fly wheel of an engine revolves with constant speed, show that the

motion of the piston is more nearly simple harmonic the greater the length of the

connecting rod.

86. Composition with different periods. Forced vibrations.

Consider again the motion of a heavy particle performing small

vertical oscillations by virtue of being suspended by an elastic

thread. Let the particle be acted upon by a periodic vertical

force, that is, a force whose magnitude and direction vary periodi-

cally. Such a force is given by

(1) F= F
Q
cos \t = mfQ cos \t .

Its maximum value is FQ
and its period is 2 TT -T- X.

It is clear that the original simple vibration will be altered.

In particular, if the force varies in such a manner that its direction

always coincides with the direction of motion, the amplitude will

increase with each oscillation. The periods of the harmonic

motion and the force must in this case be equal. On the contrary,

if the periods are nearly equal, the direction of the force will
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eventually oppose the motion and reduce the amplitude. Thus
a great oscillation will be at first produced, then reduced, and

subsequently renewed, tc.

Mathematical verification of these observed facts is readily
made. The differential equation of motion is

(v i _i_ ft**o T r*r\Q "\ f
I j^ /V O ~ / t\ \j\Ji5 t\t *

dt2

since the forces are F and the attraction of the field (= mk^s).

CASE 1. Periods unequal (X = k). A particular integral of

(2) is without difficulty seen to be ^ cosX. Hence, the
Z* ~\ 2
/V ^ A*

equation of motion is (see 75 (a), Chap. XIV)

(3) s = a cos (kt + /3) + ^ cos \t.
/C ~~~ A.

This equation is obviously obtained by composition of simple
harmonic motions of different periods, namely,

(4) s
1
= a cos (kt + /3), s

2
= ^ cos X.

A- ^~" ^

The first of these is the undisturbed harmonic motion. The
second has the same period as the disturbing force (2 TT -f- X), and

the amplitude is

The resultant motion (3) is, of course, an oscillation, but not

harmonic. The case is important when k and X are nearly equal,

that is, when the disturbing force F has a period differing slightly

from the period of the field. The amplitude b is now very large
and the oscillations of the motion (3) consequently become very

great. This result may be formulated:

If a vibrating body is acted upon by a periodicforce offrequency

nearly equal to that of the undisturbed vibrations, the forced oscilla-

tions will be of great amplitude.

We have here an illustration of the principle of resonance..

The conclusion may now be drawn that a small force with the

proper period may produce remarkable effects, and an explana-

tion is arrived at of the danger to bridges from the steady march-

ing of troops, the heavy rolling of ships caused by waves of proper
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period, etc. The phenomenon of " beats
"
in acoustics rests upon

this principle also.

CASE 2. Periods equal (\ = k").
A particular solution of

f
(2) is now found to be ^- t sin kt, and the general solution may

/<'

therefore be written in the form (see 75 (5), Chap. XIV)

(6) * = a cos (kt + ft) +& t sin kt.
A K

The presence of t in the second term destroys the harmonic

character of the component. It is plain, however, that this term

determines the numerical magnitude of when t is large, and

consequently it is seen that the amplitude of this vibration be-

comes and remains very great.

87. General harmonic field. If the rectangular components
of a plane field are

(1) Fx = - k*mx, F
y
= - Pmy,

p the field is a general harmonic field.

The force equations for a free particle are

in this case

-v f*)\ Z.2 y 72

Each of these equations is harmonic, and therefore the equa-
tions of motion of a free particle in a general harmonic field are

(3) x = a cos (kt + /3), y b cos (It + 7).

The path evidently lies within and touches the sides of a

rectangle whose sides are 2 a and 2 b. Fur-

thermore, the path will be a closed curve

when k and I are commensurable. For if

- = (m and n integers),

then, since k = 2ir-*- Tv I= 2 IT -+ T
2 , where

T^ and T2 are the periods of the component motions (3), we have

Hence when a period of time equal to T=mT
l
= nT

z
has
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elapsed, x and y have their original values, and the particle has

returned to its original position.

The curves defined ;by (3) are known in Physics as Lissajous'

Curves, from the name of the scientist who first studied them.

They may be defined as the path of a free point whose motion

is compounded of simple harmonic motions along perpendicular

lines.*

PROBLEMS

1. Obtain the equations of motion of a free particle in the harmonic fields for

which k = l, I = V2 ;
k = V2, 1 = 1; k = V3, I = 1; k = 1, I = 2

;
k = 2, I = 2.

2. Determine the path of a free particle in a general harmonic field under the

following conditions:

(a) k = 1, I = 2, a = 2, b = 1, = 7 = 0.

(6) ft =i, Z = l,a = l, 6 = 1, /3=J,7
= 0.

il

(C) jfc = 2, Z = l,a = 6, /3=-y=.

* See General Physics, Hastings and Beach (Ginn and Company), p. 529.



CHAPTER IX

MOTION IN A RESISTING MEDIUM

88. Law of resistance. In the preceding sections the charac-

teristics of motion in various fields have been determined without

reference to any resistance to the motion which might be offered

by the medium in which motion takes place. The law of resist-

ance must necessarily be established by experiment. For air, a

study of this law under given conditions of temperature, pressure,

etc., has been made by numerous investigators. The following
table will exhibit results found for rotating projectiles of the stand-

ard Krupp form, the assumption having been made by the experi-

menter in each case that the resistance varies as some power of the

speed. The first line gives the speed in meters per second, the

second line the resistance, a, 6, c, c?, e, /, g being constants of pro-

portionality.

Speed 50 240 295 375 419 550 800 1000

Resistance av2 lift cv& dv3 ev* fv
1 -1

gv
1 -55

The arrangement of the table is intended to indicate that the

law of resistance holds for all speeds in the interval under which

is written the expression for the law. Thus for speeds between

50 and 240 m. per second, the resistance varies as the square of

the speed, etc. It will be observed that the resistance involves a

complicated exponent for very large speeds. In any given case

the law necessarily depends upon the shape of the moving body,
the medium (water, air, etc.), and the changing physical conditions

of the latter (temperature, pressure, etc.). We consider in this

chapter the effect upon the motion of a resistance assumed to

follow a given law.

89. Constant field. Resistance proportional to the square of the

velocity. We may begin by studying the effect of the presence
of a resisting medium upon motion in a constant field, and, as an

example, consider the case of a falling body, assuming the resist-

200
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ance to be proportional to v2 . The equation of motion is there-

fore, if distance is measured downwards,
; dv ,

(1)
dt
=9-^

where /* is a positive factor of proportionality, called the coefficient

of resistance. Evidently //. equals the resistance offered to unit

mass when moving with unit speed.

Integrating (1), we have

1 ,

log
-2
V^r V/JLV

For initial conditions, assume = 0, v = when t = 0. Hence
G = 0, and solving for t>, we obtain, after simple transformations,

/ rt al*-0t a\ge e

ds
Writing v = and integrating, we obtain

at

1
(3) = -

log

This is therefore the desired equation of motion. The formula is

applicable to motion in any constant field under the given condi-

tions, if g is replaced by the acceleration of that field. It should

be observed in equation (1) that the initial acceleration under the

given conditions (v = when t = 0) equals g. The acceleration

then diminishes and will be zero if v =\' Examination of (2),

however, shows that the speed approaches this value as t increases

indefinitely. For this reason this value is called the limiting

speed. In words : the speed increases constantly and approaches

the limiting value \

If the resistance offered by water to the motion of a ship is pro-

portional to the square of the velocity, then (3) may be applied by

replacing g by the acceleration due to the propelling force of the

engines. In the same example, if the engines be stopped when

the velocity is w , the equation of the further motion of the ship is
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since the resistance is the only force acting. Integrating with

the conditions 8 = 0, v = V
Q
when t = 0, we obtain

The equations (5) may be applied to the problem in question for

small values of t, this limitation being necessary on account of

complications (drifting, etc.) which must soon arise.

90. Damped harmonic motion. Resistance varying as velocity.

The motion of a material particle in a central harmonic field has

already been discussed. We now investigate the effect of the

presence of a resisting medium in such a field. For small speeds
the resistance may be assumed proportional to the first power of

the speed. Further, since the resistance and the velocity have

opposite directions,- we may set

Resistance = 2 fjimv,

where /* is a positive constant, called the damping factor. The
force due to the field being equal to mk2

s, the resultant force F
acting upon the particle is

F= 2

(F
cP"s\= -

) consequently may be written in
171 dL J

the form

(1) ^ +2^ +^ = 0.
dv1 at

Two important cases present themselves for discussion.

(a) Damping factor small, //. < k. Equation (1) is now the

equation of damped vibration (73, Chap. XIV), the equation of

motion being
= Ae~^ cos

in which A and /3 are arbitrary constants. The characteristics of

this motion have been discussed at length in example 5, p. 51. The
2 7T

motion is therefore a damped vibration with the period

Obviously the effect of the damping factor is to increase the

period, since the latter for the undamped vibration equals
-
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A close approximation to damped vibration is afforded by the

simple pendulum for small vibrations. To obtain the desired

result we may use the moment equation

(Art. 62). Taking for center of moments
the center of suspension, the total force-

moment is

Rl mgl sin 0,

where

R = 2 mpv = 2 m/jil-
dt

= ml2The angular momentum = I^o = ml2 Hence the moment
(TC

equation gives

ndO i Q df nd6\ ncP02 mat2-- mgl sin 6 = ml2 = mr :

dt dt\ dt) dt2

that is,

&e
, o d6

, g . a ft+ 2fi + sm0=0.
dt2 dt I

For small amplitudes, sin 6 = 0, approximately, and this equation
now agrees with (1). The discussion confirms the observed facts

of the constancy in the period of a simple pendulum and the de-

crease in the amplitude.

(5) Damping factor large, /* > &. The solution of (1) is now

(Calculus, p. 437)

(2) s = AerS + Be'*1
,

in which r
l
and r2 are the roots of the characteristic equation

r* + 2 fjur + k2 = 0.

Let us discuss (2) for the initial conditions s = a, v = when

t = 0. These conditions are nearly met if a large vertical damp-

ing vane be affixed to a magnetic needle and if the latter is then

slightly turned from its position of equilibrium and released.

Differentiating (2), we obtain

(3) v = r^Ae^ + r
2
Ber

*'.

We have now for t = 0,

and hence

r>B =
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and (2) and (3) become

(4) 8 = a
(re^t

_ r rj\ v

rj
- r

a

From these equations the following characteristics of the

motion are obvious results agreeing with experience. The dis

tance* diminishes and approaches zero as a limit. The speed

increases to a maximum and then diminishes to zero.

PROBLEMS

1. A particle is projected with velocity v into a medium offering a resistance

proportional to the velocity (
= kv~) . Show that the particle would come to rest

after describing the finite space in an infinite time.
K

2. If the resistance of a medium is few2
,
show that a particle projected with a

velocity v would describe an infinite space in an infinite time before coming to rest.

3. If the resistance of the medium per unit mass is kv2
,
and a particle slides

under the action of gravity on a smooth straight wire inclined at an angle a to the

horizontal, prove that the space s described in time t from rest is given by

where 62 = kg sin a.

4. A heavy particle is projected upwards with a velocity L in a medium resist-

ing as the nth power of the velocity. Prove that the whole space (up and down)
described when the velocity downwards is V is equal to LT where L is the limiting

velocity and T is the time in which the particle falling from rest in the medium will

V2

acquire a velocity L

* Since ri(= p + V/u
2 &2

) and r2(= fi V/u
2 k2

) are both negative, eri
f and

cr2* both approach zero as t increases indefinitely.



CHAPTER X

POTENTIAL AND POTENTIAL ENERGY

91. A constant, harmonic, or general central field has the

property : There exists a function U of the coordinates x and y
such that the rectangular components of the force of the field are

the negative partial derivatives of this function. That is,

m ^= F = F

The function U is called the potential of the field. Obviously
the potential is given as the integral

(2) U=

Constant field. Then Fx and Fy are constants, say Fx = A,
F

y
= B; hence U= (Ax + By}, and conversely, equations (1)

hold.

Harmonic field. Here Fx = mkz
x, F

y
= mkz

y ; hence

U= \ mJtP^x
2 + s/

2
), and conversely, equations (1) hold.

Let it be understood, then, that the potential of a field (if the

field have a potential) is a function of the coordinates satisfying

equations (1).

92. Conservative field. For a field in which there exists a

potential the following theorem is characteristic:

The work done by the force of the field upon a material particle

moving from one position to another is the same for all paths between

those positions.
n j> T* 4.- i PflfaWteJ.^T=
Proof. If a particle moves ^-- Cj

from P O , y ) to PjOj, yx) along
a path C

1
in the field whose rec-

tangular components are Fx and Fy, the work done is (Art. 62)

L
205
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the integral being worked out for the given path. If, however,

the field has a potential, that is, if equation (2) of the preceding

section holds, then

(1) p'
V

\Fxdx + Fydy*)
= -

( U,
- Z7 ),

/*<> V

U-L and Z7 being the potential at P^xv y^) and P (z , # ),

respectively. But this equation shows that the work done equals

the difference of the potential at P
l
and at P taken negatively.

Hence the work done along any other path (72 is the same, and

the theorem is proved.

Again, let the particle describe any dosed path from P (% y ).

The total work done is now zero.

%lxi>yrt For take a second point

P^x-p y^) on the path and de-

note the path from P
Q

to P
l

by Cj, and from P^ to P by O
2

. Then by the result just found

we have , . ,

Work done along C =
( U-^

Work done along C
2
=

( U

Adding gives the work done along the closed path as zero.

The designation conservative is applied to a field possessing a

potential, and also to the force of such a field. The discussion

may be summarized thus :

The work done by a conservative force along any path equals the

negative difference of the potential at its extremities.

93. Potential energy. Conservation of energy. Comparison of

the energy equation (Art. 62) with the theorem just stated gives
the result :

When a material particle describes any path in a conservative field,

the change in kinetic energy equals the change in potential taken

negatively.

In the form of an equation, this statement reads

(1) Imv^-lmv.^-^-U^
if v

l
and V

Q
are the speeds at (xv y^) and (XQ , y ), respectively.

By transposing in (1), remarking that ^ mvQ
2

is a constant, and

dropping the subscript i, we obtain

(2)
1 mv2 + ( U- UQ)= constant.
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Now ^mv
2

gives the kinetic energy of the particle at any
instant. Hence, since each term in this equation must be of the

dimensions of energy, we may give to (7 U^) the name of poten-
tial energy, that is, we define

(3) Potential Energy = U Z7 ;

or in words : The potential energy at any point in a conservative

field equals the change in the value of the potential from an arbitrarily

chosen point of reference.

The essential difference between kinetic and potential energy
is this : Kinetic energy is due to motion depends upon mass and

velocity. Potential energy is due to relative position depends

upon the position relative to an assumed point of reference.

In (2), writing
Ek
= \mv\ Ep

= U- Z7 ,

we obtain the equation of energy for a conservative field:

(I) Ek + Ep = constant.

Equation (I) illustrates the PRINCIPLE OF THE CONSERVA-
TION OF ENERGY for a material particle in a conservative field,

namely, this :

If a material particle describes any path in a conservative field,

the sum of the kinetic and potential energy remains constant.

A simple illustration of a non-conservative field is afforded by the following

example. Using polar coordinates, let

Fp
= 0, F6

= \ mp.

The work integral is now (Art. 62)

Work = f t mp2dO = - f P
2dd

;

Jc 2 Je

that is, the work done now equals the mass times the

area swept over by the radius vector of the curve in

moving from OPo to OPi, a number obviously dependent

on the path c between the points. The field in ques-

tion is a simple one, the force at any point P being perpendicular to the radius

vector OP, and proportional to it.

94. Equipotential lines and lines of force. If U(z, #) is the

potential function for a certain field, then at every point of the

locus of

(1) U(x, y} = constant

the potential is the same.
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By assigning to the constant in (1) different values, we derive

a series of curves called equipotential lines, such that the potential

is the same at all points on one of these curves.

For example, in the constant field for which U = Ax + By, the equipotential

lines consist of the system of parallel lines Ax + By = constant.

If the equipotential lines are drawn in any

field, the work done along any path joining

two points P and P equals the difference

of the potential of the equipotential lines

through P and P , or equals (<?j
(?
4) in the

figure. The slope of the equipotential line (1) at any point (#, y)

is (Calculus, p. 202),

dU

Let us now find the direction of the force F of the field at the

point P(x, y). Since the axial components of F are Fx and Fy,

then the

(2') slope of the force F = ^f .

*

Comparing with (2), it is clear (Analytic Geometry, p. 36)

that the direction of F is perpendicular to the equipotential line

through the point of application.

The system of curves drawn in a field of force such that the

direction of the curve through any point is the same as the

direction of the force of the field at that point are called lines of

force. Clearly, the differential equation of these lines is

(2")
& =

|f
, or Fxdy - Fy

dx = 0.

If this equation can be integrated, the lines of force may be

constructed. Or, if the equipotential lines have been drawn, we

may construct the lines of force by drawing the orthogonal trajec-

tories. For, as is clear from the above discussion, we have the

THEOREM. Equipotential lines and lines of force intersect

everywhere at right angles.

The coordinates x and y of any point P on a curve are func-
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tions of the arc s( = PQP) measured from an assumed initial

point PQ
. Hence, in a conservative field, the potential U along a

curve may be considered a function of the length of arc. Then,
since now U along the path PQ

P is a function of s, we have

(Calculus, p. 199)

ds dx ds dy ds

This becomes, by substitution from (1), Art. 91,

ds

Remembering that and -^ are the direction cosines of the
ds ds

tangent to the curve G at P, we see (Art. 40) that the second

member of (4) gives the tangential component along C of the

force due to the field taken negatively. That is, from (4),

The derivative of the potential with, respect to the arc of a curve

equals the tangential component along that curve of the force due to

the field, with sign changed.

For example, the components of the force of the field parallel

and perpendicular to the radius vector of the point (p, #) are

found thus :

Taking the path along the radius vector
f(* = constant), we have

p

dp cr

Taking the path as the circle p = constant, then ds = pdd, and

hence
IdU

In particular, if we consider the variation of the potential

along a line of force, then, in (5), Ft
is the force of the field, or

F itself.

(6) . . along a line offorce, = F.
cts

In this equation we may assume the direction of increasing

arc to agree with the direction of the line of force. Then, by (6),
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- is always negative (or zero) and hence U is a decreasingas

function.* That is, the potential along a line of force diminishes

in the direction of the force. Otherwise

expressed thus : The force at any point in a

conservative field is directed towards the region

of lower potential. If, therefore, the equi-

potential lines are drawn in a field, the direc-

tion of the force of the field at each point is

uniquely determined.

Finally, the equipotential lines (1), when drawn for equal
increments of the potential, for example, c, c e, c 2 e, c 3 e,

etc., will, if the increment e is small enough, indicate by their

degree of proximity the relative magnitude
of the force of the field. For, by the theorem

of mean value,f we have, using (6),

(7) A Z7= -(*%/*,
where F is the force of the field at some

point P between successive equipotential

lines, and As is the distance apart of these lines measured along
the line of force AB. Since A 7= e, (7) becomes, by solving,

Hence the force at P is inversely proportional to the normal

distance (=A) between consecutive equipotential lines.

Our results are summarized as follows :

THEOREM. When the equipotential lines are drawn in a con-

servative field for equal small increments of the potential, the force of
the field at any point is inversely proportional to the normal distance

between consecutive lines.

That is, the force is greatest where the equipotential lines are

most dense, etc. In a field for which the force is everywhere of

* The function of s increases or decreases with s according as its derivative with

respect to s is positive or negative (Calculus, p. 116).

t This theorem maybe stated: Given a function U(s), for which = f then
ds

U(s) J7(s )
= (F(s'))(s So), where s' is a value of s between s and s, and F(s') is

the value of F when s = '.
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the same magnitude, the equipotential lines drawn for equal
increments are equidistant.

We now illustrate the preceding by examples.

ILLUSTRATIVE EXAMPLES

1. Discuss the conservative field for which the potential is U= a?x.

The equipotential lines are a'2x = c, that is, y
lines parallel to YY'. Since

the lines of force are parallel to JOT* and are

directed to the left. Setting c = 0, e, 2 e,

etc., we obtain the equidistant equipotential

e 2e
lines of the figure, x = 0, x =

,
x =

,
etc.

The work done by the field along any path from

Po to P equals =
,
a negative number, since the motion is against the

field.
a

'2 ai <*

2. Discuss the conservative field for which the potential is U = \k
2x2

.

The equipotential lines are % k'2x2 = c, lines parallel to

TY'. We find

Fx =- =-
dx

F, = 0,

so that the force at any point is directed towards YY', and

is proportional to the distance of that point from YY'

r Setting c = 0, e, 2 e, 3e, etc., we obtain the equipo-

tential lines of the figure. It is observed that these lines

are closer together as we recede from FT', an indication of

increasing force. The potential is a minimum when x = 0,

and the necessary condition for this, namely,

x = 0, is seen to be satisfied.

3. Discuss the conservative field for which the poten-

dx
= when

tial is U =
A'
2

The equipotential lines are the concentric circles = c,

P

orp = /fc
2 -4-c. We find Fp= - 4^ = ^=, Fe= -2^ = 0.

dp p'
2

P 60

In the figure the equipotential lines are drawn for c = A2,

k2 e, jfe
2 2 e, etc. The decreasing distance between the

circles as the center is approached indicates increasing force.

4. Discuss the Principle of the Conservation of Energy for the motion- of a

projectile when the angle of elevation is \ *.
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Choose the initial position as the point of reference for determining potential

energy. Then in the equation of energy (I) we have, since at

Ep
= 0, Ek \ mv 2

,
the result

(1) Ek + Ep = \ mv *.

The lines of force being directed downwards, Ep increases during ascent,

and diminishes during descent. Hence during ascent Ek must constantly

decrease
;
that is, the velocity must decrease, and become zero, namely, at

the highest point. The maximum value of Ep is therefore \ mvo2
. In de-

scent, since Ep constantly diminishes, Ek increases without limit, that is,

the speed increases.

Analytically, we have for the field

Fx = 0, Fy
= mg.

.-. EP = u- u = - \*Fydy = mgy-

Hence the equation of energy is

\ mv2 + mgy = \ mv 2
.

If h is the greatest height, then

mgh = | mv 2
,

or h = v 2
-*- 2 g.

5. Discuss the equation of energy for a simple pendulum.

Taking the lowest point for reference, then in (I) ,
if VQ is the speed at 0, we

have for the equation of energy

(1) Ek + Ep
= \mv&.

Since the lines of force are directed downwards, Ep in-

creases in ascent and diminishes during descent. Hence,

as in the preceding example, Ek must diminish when the

particle moves from towards A
;
that is, the speed must

decrease to zero at A. At this extreme position, Ep is

a maximum. In descent from A, Ep diminishes towards

zero
; E* increases, reaching the maximum value (= \ mv 2

) again at 0. This cycle

is repeated from to A' and A' to 0. The motion is therefore a ceaseless vibra-

tion from A to A'.

Analytically, as before, Ep = mgy, and (1) is \ mv2 + mgy = \ mv 2
. The

greatest vertical height is therefore v 2
-*- 2 g.

6. Discuss the equation of energy for simple harmonic motion.

Assuming the center O as point of reference and v as velocity at 0, the equa-
tion of energy is

From example 2, we know that Ep increases when the motion is away from

the center, and diminishes for motion towards the center. Hence Ej, must con-

stantly diminish and become zero when the particle moves away from the center,

and must subsequently increase until the center is again reached. We see, there-

fore, as in example 5, that the motion must be a ceaseless vibration.

Analytically, since Fx = mk2
x, Fy

= 0, we have

= ~ ( Fxdx =

Hence (1) is \ mvz + | mk2x2 = \ mv 2
,
and for the amplitude we find

x = VQ -;- k.
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PROBLEM

1. Discuss the conservative fields for which the potential function U is that

given :

(a) by ; (6) ax + by ; (c) ax2
; (d) by

2
; (e) ax* + bf ; (/) cxy ;

(gr) ax2 + by
2 + 2 dx + 2 ey.

95. Non-conservative forces. Friction. The work done by the

force in a conservative field changes sign when the direction of the

motion is reversed. It is therefore obvious that friction is not a

conservative force. For the direction of the force of friction is

reversed when the direction of motion changes, and conse-

quently the work done by a frictional resistance does not change

sign. For example, if the resistance offered by the air is con-

sidered in the motion of a particle projected vertically upwards,
the frictional resistance is opposed to the motion in all positions,

and consequently the work done is negative in both ascent and

descent. In the illustrative example 4 of Art. 94, therefore^ we
see that in nature the velocity of the projectile will be lessened,

a conclusion agreeing with the observed fact that the velocity is

less when the projectile returns to the initial position. Again, in

the discussion of the simple pendulum (example 5, Art. 94), if

the frictional resistances present in nature are considered, the

motion will not be perpetual. Friction will act to diminish the

velocity.

In general, non-conservative forces are said to be dissipative,

since by their action kinetic energy is lessened without an equiva-
lent increase of potential energy. In nature, non-conservative

forces are always present, and accordingly the principle of

the conservation of energy does not apply in the form enunciated

in Art. 93. To cover the actual facts, thermal and chemical

energy must be considered, matters with which we are not

concerned in this volume.

96. Newtonian potential. According to Newton's Law of

Universal Gravitation (Art. 81), two particles attract each other

with a force varying directly as the mass of each and inversely as

the square of their distance apart. The force is therefore, with

proper notation and units,

(T) F mm
'>
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Consider, now, the plane field of force due to the attraction

of a particle of mass m situated at the origin. The force upon
unit mass at any point is, therefore,

(2) F,= --f ^> = 0.

The potential function is, accordingly,

X
(3) U=0- fFpdp=C-

m-
J P

If, for p = co, we assume U= 0, then O= 0, and (3) becomes

(4) U=---
P

The newtonian potential at P* is defined as equal to m -*- p,

or, denoting this by N,

(5) N=-U = ~-

P

From the result of Art. 93, we may make the definition :

The newtonian potential at any point equals the work done in moving

up to that point from infinite distance.

To study the field due to two attract- 0*~~ /

ing centers of masses m and m', we merely /p>
have to observe that the newtonian po- O'

tential at any point P must equal the sum of the potentials due

to the separate masses. This appears at once from the above

definition. Hence,

(6) N= + ^.
p p'

Similarly for any number of centers. The newtonian potential

due to the attraction of a continuous solid is readily defined, for if

the solid is divided into elements of mass, and a point chosen in

each element, then, proceeding as usual, we define the potential

JVatPas

(7) N= C
J

in which p denotes the distance from P to any point of the solid.

ILLUSTRATIVE EXAMPLE. Find the potential due to an attracting thin homo-

geneous spherical shell of density r. Find the force of the field at any point.
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Solution. Take the center of the sphere as origin and draw OX through the

point P. Let OP = c. We may consider the shell divided into strips by planes

passed through it perpendicularly to OX. The mass dm of one of these strips
* is

2 wadx times T. The distance p from the strip to P is Vy2 + (c x)'
2

. Hence

2 ira rdx Ca dx- =2 warf/-a+ (c a;)
2 J-aVa2 + c2 2 ex

The radical must be taken with the positive sign, and this makes it necessary to

distinguish two cases.

(I) c > a, exterior point. Then

mass of shell

c c

Hence the newtonian potential for a spherical

shell at an exterior point is the same as if its

mass were concentrated at its center.

(II) c< a, interior point. Now

that is, is the same at every interior point. Hence

the force of the field is zero within the shell.

The result for an exterior point is extended at

once to a solid. sphere by conceiving it to be made up of concentric shells. Hence

the

THEOREM. The newtonian potential for a solid sphere at an external point is

the same as if its mass were concentrated at its center.

Consider now an interior point of a solid sphere, at the distance of x from its

center. \Ve conceive this sphere as consisting of (a) a spherical shell of interior

radius x and exterior radius equal to that of the solid sphere ; (6) a solid sphere of

radius x.

Take these up in order.

(a) Since the potential is everywhere constant within the shell, its attraction

is zero. Consequently, the attraction exerted is that due to the solid sphere of

radius x.

(6) The mass of this sphere is f TTTX?, and hence the attraction is by the theorem

f irrx8 -T- x2 ,
or equal to $ TTTX. That is, the attraction exerted by a solid sphere

upon a point within it is proportional to the distance of that point from the center

of the sphere.

Finally, we readily see that the mutual force of attraction of two solid spheres

is the same as if their masses were concentrated at their respective centers.

PROBLEMS

1. Find the newtonian potential due to a line distribution of matter (thin

uniform rod) at a point on the line produced.

Ans. N = r log! 1 -f -
j

,
where I = length of line, d = distance of point from

nearest end. * '

* The surface of a zone equals the product of its altitude by the circumference of a

great circle.
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2. Find the force of attraction of the rod in the first example upon unit mass

at the given point. * _ dN _ r~
dx~ d(l + d)'

3. Find the newtonian potential due to a homogenous circular disk at a point

on the line through the center of the disk and perpendicular to its plane.

Ans. N=
( -y/a2 + x'z x) ,

wherem = mass of disk, x = distance of point from disk.
a

4. Find the force of attraction exerted by the disk in problem 3 upon unit mass

at the given point. . F _ 2m I x _ -,

'

\ Va2 + x2

5. Find the newtonian potential due to the attraction exerted by a homogeneous

right cylinder or cone at a point upon the axis.

6. Find the newtonian potential due to a homogeneous square plate at a point
on a side of the square produced.



CHAPTER XI

SYSTEM OF MATERIAL PARTICLES

97. System in a plane. The preceding chapters have been

devoted to the study of motion of a single particle. We shall

now study the simultaneous motion of two or more particles, and

in this manner prepare ourselves for the study of motion of a

solid.

Consider a system of two particles moving in a plane. Let

m
1
and m2 be their masses, and the positions

at any instant PI(XV y^), -P
2(z2 , y2), respectively.

Then if (-FlT, Fly ~)
are the axial components of the

complete resultant of the forces acting upon the

particle at Pr and
(.Z^., F2y) the same at P2,

the force equations (Art. 62) are, for the first particle,

and for the second particle,

(fix cPu'
(2) m^ = F^ m^ = F2y

.

Motion of the center of gravity. Adding the first equations in

(1) and (2), we obtain

~ ~ =

also from the second equations we get

(4) rn^ + m^ = F
l

If P(x, y*) is the center of gravity of the given particles, then

(Art. 22)
+ m -

mtfj +_ _
m

l + w?
2

m
l

or also

(5) m
l
x

l + mzx^
= (m l 4- ma)a

217
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Differentiating (5) twice with respect to t, and substituting
in the first members of (3) and (4), we obtain

The second member of the first of equations (6) is the sum
of the JT-components of the resultant forces acting on the first and

second particles which comprise the system. It is therefore the

sum of the ^"-components of all forces acting upon the system,
and will be denoted by Fx . Similarly the second member of the

second of equations (6) is the sum of the T'-components of all

forces acting upon the system, and will be denoted by Fy
.

Denoting the mass of the system, which is the sum of the

masses of the individual particles, by M, equations (6) may be

written

These are the fundamental equations of motion of the center

of gravity of the system. Their discussion shows that this point

moves as if forces equal and parallel to the given forces were act-

ing at that point upon a mass equal to the combined mass.

That is, the center of gravity moves as if the total mass of the

system were concentrated at that point and acted upon by forces equal

and parallel to the given forces.

98. System in space. Let the masses of n particles moving
in space of three dimensions be denoted by mv mv mn . Let

the positions at any instant be given by P^(x-^ y^, Zj), P2 (:r2 , yy z
a),

Pn(xn , yn, 2
re), and the axial components of the complete resultant

of the forces acting upon the individual particles by (^\z, Fly ,
F

lz ),

(.F2,r F2y , F^, . (Fnx, Fny , Fnz}. The force equations for the

separate particles are

d^i IT &U\ -n ^z
\ _ IT

flfi

~
\xi 1

fifi

-
lyi 1

ftp
If*

d2vn d?za

(1)
= .Fo

"2 _
dt*

= F m " = F
d1?

n
dt2
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Motion of the center of gravity. Adding the first column of

equations (1), we get

If P(z, y, z) is the center of gravity of the system, then

mx
m

If M(= m l + vn<
i + wn) i the total mass of the system, and

Fx(= Flx + F^x + J7nx) is the sum of the ^"-components of all

forces acting on the system, it is evident that equation (2) may
be written

Similar equations in y and z respectively follow from the

second and third columns of (1). Hence the fundamental equa-
tions for the motion of the center of gravity of the system are

(4) x*j-rf x*$*rr *f -*..

Equations (4) show that the statement of the preceding arti-

cle concerning two particles moving in a plane holds also for n

particles moving in space. Hence the

THEOREM. The center of gravity of a system ofmaterial par-

ticles moves as if the total mass of the system were concentrated at

that point, and acted upon by forces equal and parallel to the given

forces. v
z

In particular, if the vector sum of all >^
forces acting is zero, then

and the center pf gravity moves with uniform

rectilinear motion. For example, in the case

of three particles moving under the action of their mutual gravi-

tational attraction, the forces are in pairs equal in magnitude but

opposite in direction, and their vector sum is zero. Hence the
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THEOREM. The center of gravity of a system of particles mov-

ing under the action of their mutual gravitational attraction will de-

scribe a straight line with constant speed.

This result is called the principle of the conservation of the

motion of the center of gravity.

99. Moment equation for a system of particles. Let the

first of equations (1), Art. 97, be multiplied by y and the sec-

ond by xr Then, by subtraction,

(1)

It may be easily verified (see Art. 59) that

&y\ _ &LX
\

d f dyl _

Hence equation (1) may be written (see Art. 59)

dx-

Now the second member is the moment (Art. 58) of F
l
with

respect to the origin, and the quantity in parenthesis is the

moment of momentum (Aft. 59) of m
l
with respect to the origin.

Denoting the latter quantity by H^ equation (2) becomes

V-1 = moment of F-,.
at

Also from equations (2), Art. 97, similarly,

^ = moment of JP2 .

Iilf=
-ffj + H^ denotes the total moment of momentum of the

system, and if the total force-moment of the system is defined as

the sum of the moments of the resultant forces acting on each

particle, we have, by addition,

dff
-^ = total force-moment.

*

at

This result is clearly a generalization of (VIII), Art. 59.*

* This result, proved for two particles in the .XT-plane, may be extended by a similar

process to any number of particles in space of three dimensions.
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In particular, if the forces acting are as before mutual gravita-

tional attractions only, the forces and consequently their moments
cancel in pairs, and f

H = constant.

THEOREM. PRINCIPLE OF THE CONSERVATION OF MOMENT
OF MOMENTUM. The total moment of momentum in any system

of particles moving under the action of their mutual gravitation is

invariable.

100. Work and energy of the system. The total work done

upon a system of material particles is obtained by summing up
the work done upon each individual particle by the resultant of

the forces acting upon it. The kinetic energy of the system at

any instant is the sum of the kinetic energy of the individual

particles. Referring to the two particles of Art. 97, we have for

any displacement,

Work done by F = iC^Vi
2 m

1
v
1

' 2
')
= change in K.E. of mr

Work done by F2
= \(m<p m

2
v
2

' 2
)
= change in K.E. of ra

2
.

Hence, by addition,

(1) Total work done = \\_in,\v^ + m2v2
2 - (wiVi'

2 +m2V2/2
)]

= change in K. E. of system.

As in the preceding articles the result expressed by equation

(1) is general.

101. Rigid system of particles. An especially important ex-

ample of motion of a system of particles arises when the system
is rigid; that is, when the mutual distance

of each pair of points is invariable. The im-

portance of this case is due primarily to its

application in the case of a rigid solid body,
which is then regarded as a continuous rigid

system.
The rigidity is to be regarded as maintained by a constraint

which exerts upon any pair of particles Pl
and P2

reactions equal

in magnitude but opposite in direction. These reactions are un-

known, but cancel out in the equations of motion, as shall now

appear.
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The forces acting in the motion of any rigid system may be

classified as

(1) reactions due to the rigidity ;

(2) impressed forces.

Let (Rlr , R\y) be the axial components of the reaction due to

rigidity at Pv and (R2xi -^vy) ^e the components of this force at

P2
. Then

(1) R
lx + E,x = 0; R

ly + E2y
= 0.

Let the sum of the axial components of the impressed forces at

P
1
be (Flx, Fly) and at P

2
be CF2*>

F
2y). Then the equations of

motion are, for the first particle, .

(2) mj-
and for the second particle,

Then the method of Art. 97 gives at once the

THEOREM. The center of gravity of any rigid system moves as

if the mass of the entire system were concentrated at that point and

acted upon by forces equal and parallel to all impressed forces.

In analytic form this theorem is for space

f\\ -mm-fPW r, -mw^f/ T-r T.*-^^ -r,

M-^ = FX , M-^=Fy , MW,
= F2,

where M is the total mass of the system, F is the resultant of the

impressed forces, acting at the center of gravity (%., y, z).

For a rigid system of particles in the XZ'-plane we may obtain

by the process of Art. 99 the

THEOREM. The time-rate of change of the total moment of mo-

mentum of any rigid system equals the total force-moment of the im-

pressed forces.

In analytic form, this is

In applying this theorem, any point whatever may be chosen as the

center of moments.
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Consider next the question of work and energy, supposing the

two particles of Art. 97 are rigidly connected. Let the equations
of motion of P

1 ajid P^ be, respectively,

(4)
X =

At the instant t = let the position of the

system be P^P^ in the figure. At any
other instant, t, let the position be P^P^ .

The total work done by the reactions

due to rigidity is then given by the sum of the definite integrals

/ {Rlx
t/O

I

i/O

By virtue of equations (4) the integrands are functions of t

alone, and since from (1), Rlx
= _R

2J;,
R

lv
= RZy, we may write

the expression for the work in the form

(5)

Now
(6) (^i-^2)

2
+(yi-2/2)

2 = ^
where I is constant. Differentiating (6), we obtain

(T) Oj - x^)(dxl
-

dx^) + (?/!
-

2/2) (dy^
- dy^ = 0.

O

Now (x, = Co ~~"

[

I

Hence (7) becomes after dividing out,

dy^ = 0.

Hence the definite integral in (5) is zero, and the reactions 7^
and RI do no work. We see therefore that in a rigid system the

work done is contributed by the impressed forces only. This re-

sult can be extended at once to a system of n particles, and we

have
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(III)

Work done by impressed forces = change in kinetic energy

Work done in a constant field upon a rigid system. Let the

constant force be weight, and draw the axis of Y vertically down-

wards. Then for a single particle the work done is

O/i
-

if y^ and Y^ are the final and initial ordinates.

work is n

(8) 2

Hence the total

. _ Yi )
=
g\
Vmiyi

- V miY~\

If Y and y are the initial and final

ordinates of the center of gravity,

then ^ ^-\

Hence (8) becomes, if '^.mi
= M,

(IV) Total work done by gravity = Mg(y - Y).

This gives the important

THEOREM. If a rigid system is in motion under the action of

weight only, the total work done equals the total weight of the system

multiplied by the vertical displacement of the center of gravity.

PROBLEMS

1. Two particles of masses 50 Ib. and 40 Ib. are acted upon at a certain

instant by parallel forces of 75 poundals and 60 poundals, respectively, whose lines of

action are 4 ft. apart and perpendicular to the line joining the particles. Determine

(a) the position of the center of gravity and (6) its acceleration at the instant

named.

Ans. (&) 1.5 ft. per second per second, if the forces have the same direction.

2. If the two particles of problem 1 attract each other with forces of 40

poundals, the remaining data being as before, compute (a) the acceleration of each

particle and (&) the acceleration of the center of gravity.

Ans. (&) 1.5 ft. per second per second.

3. A particle of mass m slides down a smooth inclined plane of angle a, the

plane itself (mass M) being free to slide on a smooth table. Find the acceleration

of the particle and of the plane.
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4. A system consists of two particles, of which one (mi) moves always on the

X-axis with an acceleration k-x, and the other (m2 ) along the F-axis with an

acceleration K2
y. Discuss the motion of the center of gravity.

5. To the system of problem 4 is added a third particle (013) which moves along

a line whose inclination to the X-axis is 45 with a constant acceleration a. Discuss

the motion of the center of gravity.

6. Three particles in the XF-plane are acted upon by forces as follows :

mi by a force equal to kt whose inclination to X-axis is 45,
m2 by a force equal to kt whose inclination to X-axis is 135,

ms by a force equal to V2 kt in the direction of F-axis.

Show that the center of gravity moves uniformly in a straight line.



CHAPTER XII

DYNAMICS OF A RIGID BODY

KINEMATICS

102. Rigid body. A rigid body is defined mathematically as

a continuous system of material particles whose mutual distances

remain unchanged. The motion of a rigid body is known if the

motion of each point of the body is known. More explicitly, we

say the motion of a rigid body is completely determined if we
know:

(1) the position of the body at any instant ;

(2) the velocity of each point at any instant ;

(3) the acceleration of each point at any instant.

The position, velocity, and acceleration of each point are known,
if the position, velocity, and acceleration * of three of the points

not on the same straight line are known. Hence in the general

case, the discussion of the motion of a rigid body may be reduced

to the discussion of the motion of a system of three particles,

forming an invariable triangle. For practical purposes we con-

fine our attention to the simple types of motion treated below.

103. Translation. The motion of a body is a translation if

every line in it remains parallel to its original

position. Such a motion is observed in the

driving rod of a locomotive or in the motion

of a book sliding upon a table so that one

edge of the book remains parallel to one edge
of the table. At any instant every point of

the body has the same velocity both in direction

and magnitude. The motion is completely
determined if the motion of a single point is known, e.g. the motion

of the center of gravity.

* Since the mutual distances of these points are invariable, these quantities are not

independent.
'

226
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In uniform translation the velocity is constant and the path of

any point is a straight line.

In uniformly accelerated translation the acceleration is con-

stant and the path of any point is rectilinear.

104. Rotation. The motion is a rotation if the body turns

around a fixed axis, its points describing circles which lie in

planes perpendicular to the axis and have their centers on the

axis. An example of rotation is furnished by a fly wheel. At

any instant, every point of the body has the same angular velocity

about the axis. The motion is completely determined by the

motion of a single point.

In uniform rotation the angular velocity is always constant.

In uniformly accelerated rotation the angular acceleration is

always constant.

105. Uniplanar motion. In this type of motion the body
moves so that all its points move parallel to a fixed plane. Ex-

amples are furnished by a rolling cylinder and the connecting
rod of an engine.

The velocity of each point is parallel to this fixed plane, which

is called the directing plane. Each line in the body perpendicular
to the directing plane moves parallel to itself, and at any instant

every point of this line has the

same velocity. Consequently,
we need to study the motion only
of all points in the body lying
in a plane parallel to the direct-

ing plane. Let the plane of the

paper be such a plane. Let

and' P be any two points.

Let v = velocity of ;

v = velocity of P.

Since the distance OP is invariable, the motion of P relative to

must be a rotation about 0. If vr is the velocity of P relative

to 0, then vr must be perpendicular to OP. The actual velocity

(v) of P is then compounded of the velocity (v ) of and the

velocity (vr) of P relative to . That is in the sense of vector

addition v = V 4- vr .
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The velocity of any other point P' in the section may be

treated in the same way. The velocity (v'r) of P' relative to

must be perpendicular to OP' and, since the body is rigid, we
have the proportion vr : OP : : v'r : OP'. The actual velocity (V)
of P' is given by v'= v'r + v . Hence the motion of the body is

at any instant compounded of:

(a) a rotation about a temporary axis chosen arbitrarily per-

pendicular to the directing plane ; and

(6) a translation parallel to the directing plane with a velocity

equal to that of any point on the temporary axis.

In the notation used,

f Velocity of translation = v ;

(1)
Angular velocity of rotation &> =

OP

THEOREM. INSTANTANEOUS Axis. There is at each instant

an axis perpendicular to the directing plane which is at rest.

Proof. Draw AB in the plane of the

section at right angles to v . Assume the

direction of rotation of AB about as in

the figure. Lay off on AB

(2) 00 =
v

(̂0

where v = speed of 0, w = angular ve-

locity about 0. Then the velocity of rota-

tion of C about = v . Since the actual

velocity of is the resultant of v and v ,

it is zero. Q.E.D.

The point O is the instantaneous cen-

ter of the section. The locus of the in-

stantaneous centers is the instantaneous

axis. Since the velocity of (any point)

is V
Q
=G> OO by (2), the angular velocity

of the body about the instantaneous axis is a> also, that is:

THEOREM. In the resolution of a uniplanar motion into a trans-

lation and a rotation, the angular velocity about the axis is the same

for all axes.

To construct the instantaneous center. Given the actual veloci-
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ties of two points and 0' in a section parallel to the directing

plane. Let OT and O'R be the vectors representing the veloci-

ties. From the preceding proof of the exist- g t

ence of an instantaneous center (7, it is seen ^

that must lie on a line perpendicular to OT,
and also on a line perpendicular to O'R. Draw
OL and O'L' perpendicular to OT and OR, re-

spectively. Then the intersection of OL and

O'L' is the instantaneous center. To construct

the instantaneous center in any uniplanar
motion it is necessary to know only the directions of the motion

of two of the points. Q.E.F.

In the preceding discussion we have proved the

THEOREM. Uniplanar motion may at any instant be regarded
as a rotation about the instantaneous axis.

106. Centrodes. The instantaneous center moves both relative

to the body and in space. The locus of its various positions

relative to the body is called the body
centrode SS. The locus of its va-

rious positions in space is called the

space centrode S'8' . The body cen-

trode is fixed relative to the body. The

space centrode is fixed in space.

These two loci are tangent at any
instant. The motion of the body

may be arrived at by rolling the body centrode upon the space

centrode.

107. Screw motion. In this type the motion is compounded
of a translation and rotation. The body rotates about an axis in

space and at the same time undergoes a translation along the axis.

The motion of the points in the axis of rotation is clearly a trans-

lation. The path of any other point is a curve traced on a

cylinder about the axis of rotation. This curve is a helix if the

angular velocity bears a constant ratio to the velocity of trans-

lation. The position of the body at any instant is given by the

position of one of its points (provided this does not lie on the

axis of rotation).

O
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ILLUSTRATIVE EXAMPLES

1. The motion of a projectile is compounded of a uniform translation along its

axis and a uniform rotation around its axis. Find the equations of motion of any

point.

Solution. Let the Z-axis be the line of motion of the axis of the projectile.

Consider the motion of the point P(z, y, 2). A plane section through P per-

pendicular to the Z-axis has for its instantaneous center the point (7(0, 0, z). The
motion of C is uniform translation. Hence,

z = a+ bt.

The motion of P relative to C is uniform rotation.

Hence, if d denote the distance CP and if the initial

position of P is in the JZ-plane, we have

; X i wo
*"}

[y = ds\nkt.

Hence the equations of motion of the point P are

= dcoskt,

dsiaktj

a + bt.

The path of the point is a helix (Calculus, p. 272).

2. A line AB moves with its extremities on two perpendicular lines. Find the

centrodes and the direction of motion of any point at any instant.

Solution. Let the point A move along the JT-axis and the point B along the

F-axis. The instantaneous center corresponding to any position of the line AB is

found by erecting a perpendicular to the JT-axis at A and a perpendicular to the

Y"-axis at B. These lines intersect in the point C,

which is the instantaneous center. The body cen-

trode is the locus of the point C relative to AB.
Since C is the vertex of a right triangle constructed

on AB as a hypotenuse, the body centrode is a

semicircle (ACS} with AB as diameter. The space

centrode is the locus of C in space, that is, rela-

tive to the XF-plane. Denoting the coordinates

of C by (z, y) and the length of AB by I, we have,

for any position of C,

x2 + y* = P.

O A'

Hence the space centrode is a circle (A'CB1

), with center at the intersection of

the two fixed lines and radius equal to the length of AB. It is readily seen that the

motion of AB under the conditions stated in the problem may be accomplished by

rolling the circle ACB, of which AB is the diameter, on the inside of the circle

A'CB', of which AB is the length of the radius.

At any instant the motion of the line is a rotation about C. Hence the direc-

tion of motion of any point P is perpendicular to the line PC.
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PROBLEMS

1. The center of a fly wheel moves in a straight line (in the plane of the wheel)
with constant velocity b, while the wheel turns with constant angular velocity u.

Find the equations of motion of a point on the circumference.

2. In the preceding problem suppose the center moves with constant accelera-

tion /, and the wheel turns with constant angular acceleration a. Find the equa-
tions of motion of a point on the circumference.

3. A circular disk rolls on the X-axis. If the center moves with a constant

acceleration/, find the equations of motion of a point on the circumference.

4. A circular disk A rolls on the exterior of a second circular disk B. Deter-

mine the centrodes.

5. A pole slides through a fixed ring while one end moves along a horizontal

line a feet below the ring. Determine the centrodes.

6. A chord of a circle moves around the circumference. What are the

centrodes ?

7. Construct the centrodes for the connecting rod of an engine.

8. A point P of a plane figure moves with constant speed along a straight line

while the figure rotates with constant angular velocity. Show that the body and

space centrodes are respectively a circle whose center is P and a line parallel to the

path of P.

9. A coin of radius a rolls down a plane. What is the locus at any instant

of all points having the same speed as the center.

10. A plane figure moves in its own plane so that a point P moves on a curve C
with constant speed, the figure meanwhile rotating with constant angular velocity.

Show that the motion may be obtained by rolling a circle with P as a center upon
& parallel curve of C.

11. Construct the centrodes for problems 8 and 10; (a) when the acceleration

of P along its path is constant and the angular velocity is constant : (6) when the

acceleration of P is constant and the angular acceleration is constant.

KINETICS

108. Force equations. Work and energy. In Art. 101 cer-

tain theorems on the motion of a rigid system of material particles

were proved when the number of particles is finite. These theo-

rems can be extended to cover the motion of a rigid body, which

has been defined as a continuous rigid system of material particles.

In the case of a finite number of particles the theorems were

proved (see, for example, Art. 97) by forming the sum of a finite

number of expressions. In the case of an infinite number of

particles forming a continuous system, the limit of the sum is con-
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sidered. In other words, the ordinary finite sum is replaced by
the definite integral. This process, which is carried out in detail

in the following article on kinetic energy, shows that the theo-

rems of Art. 101 are applicable to the motion of a rigid body.
For the motion of the center of gravity we have the

THEOREM. When a rigid body is subjected to the action of any

forces, its center of gravity moves as if the entire mass of the body
were concentrated at the center of gravity and the given forces applied
there parallel to theirformer directions.

For example, when no forces are acting, the center of gravity
has uniform motion in a straight line. When the forces acting
are all equal and parallel, the center of mass has uniformly accel-

erated rectilinear motion, or else describes a parabola. The center

of mass of a projectile describes a parabolic orbit.

From the theorem stated above we may write the force equa-
tions for the motion of the center of mass. For plane motion of

the center of gravity these are :

m Md*x - F M^V - Fu
dt>-

w d?-
where M is the total mass of the body, (2, y) the coordinates of

the center of mass, and F is the resultant of all applied forces.

From Art. 101 we have for a rigid body the energy equation

xTTN Work done on a rigid body 1 ~.
<n> by all impressed forces }

= Changre m kmetic enerffy'

In particular

Work done by weight = Mgh,

where M is the mass of the body and h is the vertical distance

described by the center of gravity.

109. Kinetic energy. The kinetic energy of a system of

material particles was defined as the sum of the kinetic energy
of each particle, K .E._ JBV/

,

=1

We now apply this definition to the continuous system of particles

forming a rigid body. Dividing the whole mass in any way into

n small elements AjW, A2ra, A,-m, Aww, we have as an approxi-
mate value of the kinetic energy of the small element A,ra the

expression
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where v
{
is the speed of some point Pi within the element. As an

approximate value of the kinetic energy of the whole mass we
have n

Let the number of elements into which the

whole mass is divided be increased indefinitely

in such a way that A.
t
m (for every i) approaches

zero as a limit. Then the definition of the kinetic

the rigid body is

limit limit <\ 1 4 1

energy

y'TTTx
(III) K.E. = =

where the definite integral is understood to extend over the entire

mass.

We shall consider the calculation of the kinetic energy in the

four types of motion treated in Arts. 103-107.

(i) Translation. For every point of the body the velocity is

the same at any instant. Hence in (III) v is a constant, and

(1) K.E. = i Cv2dm = ^ Cdm = ^-Mv*,

where Jfis the total mass of the body.

(ii) Rotation. For every point of the body the angular velocity
G> about the axis of rotation is the same at

any instant. Consider an element of mass dm
at P, moving with velocity v in the circle

whose center is 0. Then if a> = angular ve-

locity about the axis ?,

v =

K. E. = I Cv2dm =

where It
= moment of inertia with respect to L

(iii) Uniplanar motion. Through any point choose a tempo-

rary axis Z, perpendicular to the directing plane. It was shown in

Art. 105 that the motion is compounded of (1) a motion of trans-

lation with velocity V
Q equal to the velocity of 0, and (2) a motion

of rotation with angular velocity to (the same for all points)
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about I. The kinetic energy due to translation is | Mv^ and the

kinetic energy due to rotation is | J co
2

. Hence the total kinetic

energy is

(3) K.E. = JJfV + iV-
If the temporary axis is the instantaneous axis, then v = and

(4) K.E.= iJco>2,

where Ic is the moment of inertia about the instantaneous axis.

An important formula for the kinetic energy is obtained if the

temporary axis passes through the center of gravity of the body.
Then (3) becomes .

(5) K.E. = JJfV + i/X.
This formula exhibits the kinetic energy as made up of the

energy of translation of the entire body with a velocity equal to

that of the center of gravity and the energy of rotation about an

axis through the center of gravity.

(iv) Screw motion. Since screw motion is compounded of a

translation along an axis in space and a rotation about this axis,

the total kinetic energy is the sum of the energy of translation and

the energy of rotation. If v denotes the velocity of a point in the

axis, the kinetic energy of translation is ^ Mv
2

. If / is the moment
of inertia with respect to the axis along which the body is moving,
and co is the angular velocity about this axis, the kinetic energy
of rotation is

|-/<
2

. Hence the total kinetic energy of a body

executing screw motion is given by

110. Moment equation in rotation. It was shown in Art. 99

for any system of material particles that the time derivative of the

moment of momentum with respect to a

point is equal to the total force-moment

with respect to that point. This result

may be stated in a new form when the

system of particles is rigid and rotates

about an axis. Consider first a single

particle in the JTJT-plane moving in a

circle of radius r about the origin. Then
the' moment of momentum, Art. 59, with respect to the origin is
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mrv where v is the linear velocity, or mr*(o where a> is the angular

velocity. Since m and r are constants, the moment equation of

the particle is

(1)
dt

where I is the moment with respect to of the resultant of all

forces acting upon P. Now mr2 is the moment of inertia, z, of m
with respect to 0. Hence (1) may be written

'-*

Equation (2) holds for each particle of a rigid system. Suppose,
for simplicity, the system consists of two particles, P1

and P2 ,

rigidly connected, and rotating about the origin. Since the system
JZQ

is rigid, the angular acceleration is the same for each particle.

Hence we have

and by addition,

(3) tt+h)fp-4+ t-

Since the moments of the internal forces cancel in pairs, the second

member of equation (3) contains only the sum of the moments

of the impressed forces, which is denoted by L. Further i + i
z
=I

is the moment of inertia of the system. Hence we have the

moment equation in rotation,

(IV) jf5=x.

By the process of integration employed in deriving (III), it is

readily shown that (IV) holds when the system of particles forms

a rigid body. Hence the

THEOREM. The product of the angular acceleration and the

moment of inertia of a rigid body with respect to an axis about which

it is rotating is equal to the sum of the moments of the impressed

forces with respect to that axis.
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111. Comparison of formulas in translation and rotation.

Translation

Uniform Translation.

Rotation

Uniform Rotation.

8 = s
o + v

<f-

Uniformly Accelerated.

v = v
() +ft,

s=*o+ V + i/*
2

-

f = acceleration.

K.E. =i.
Force Equation

d2s r,m = F.
dt*

Uniformly Accelerated.

to = o> + at,

a = angular acceleration.

K.E. =

Moment Equation

Hence, to change formulas in

Translation to Rotation

Replace linear velocity by

Replace linear acceleration by

Replace mass by

Replace distance by

Replace force by

angular velocity.

angular acceleration.

moment of inertia.

angle.

moment of force.

112. Fundamental equations for uniplanar motion. It has been

shown (Art. 105) that uniplanar motion may be regarded as com-

pounded of a translation with the velocity of an arbitrarily chosen

point 0, and a rotation about an axis through perpendicular to

the directing plane. If for the point we chose the center of

gravity, the motion of translation is determined by the force

equations (I). The motion of rotation is determined by the

moment equation (IV), and since the angular velocity is the same

for all axes, the choice of the axis is arbitrary. Hence the funda-

mental equations for uniplanar motion are
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#=*- (Force Equations)

(Moment Equation)

Work done by all impressed forces
= change in kinetic energy.

(Energy Equation)
K.E. =

(V)

In equations (V) the point (#, y~) is the center of gravity of the

body, v
g
is the velocity of the center of gravity, Ig is the moment

of inertia with respect to the gravity axis perpendicular to the

directing plane, L is the resultant moment of all the impressed
forces with respect to any axis perpendicular to the directing

plane, and Jis the moment of inertia with respect to the same

axis.

ILLUSTRATIVE EXAMPLES

1. Compound Pendulum. A heavy body is suspended on a horizontal axis

and swings under the action of weight. Determine the motion.

Solution. Let G' be the extreme position of the center of gravity, GO be

the lowest position of the center of gravity, and G be any position of the center of

gravity. Consider the motion from G' to G.

From (2), Art. 109,

K.E. =

where IA. is moment of inertia about the axis of sus-

pension, and u is the angular velocity when the center

of mass is at G.

The work done by weight when the center of

mass falls from G' to G is

Work done = mg Jl/jV.

But MN=AN-AM=AGcose-AG'cosa,
Let AG = AG' = d,

.-. Work = mg d(cos cos a).

By the energy equation,

mg d (cos cos a) = | J^w
2

.

Hence w2 = m& '

(cos cos a).
IA

Differentiating with respect to t, since w =
,

dt

If-sine^
\ dt
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After division by w =
,
this equation becomes

dt

dt2 IA

This agrees with (6), Art. 68, if

1-lL.
md

Hence the

THEOREM. A compound pendulum moves precisely like a simple pendulum

whose length is given by the formula I =
md

The corresponding simple pendulum is called the equivalent simple pendulum.

2. A homogeneous circular cylinder of mass M and radius r, rotating about its

axis a times per second, falls from rest through a vertical distance of h feet under

the action of its weight. Compute the total kinetic energy.

Solution. The cylinder is executing uniplanar motion and hence the kinetic

energy is given by (V). The moment of inertia of the cylinder with respect to its

axis is Ig = Mr2
. The angular distance moved in one second is 2 ira radians.

Hence <a = 2 aw. The kinetic energy of translation is found at once from the

energy equation to be

i M& = Mgh.
Applying (V),

K.E. = I Mr2
(2 airy

2 + Mgh.

.: K.E. = M(WTr2 + gK).

In many problems involving a system of two or more connected

bodies acted upon by given external forces the motion may be

discussed by the previous methods if we take into account the

reactions due to the connections. From the fundamental equa-
tions thus obtained for each body the reactions or internal forces

may be eliminated and the motion determined. The process is

illustrated in the following example.

3. A cord passes over a smooth peg as shown in the figure. To one end of the

cord is attached a mass m, which falls vertically, and the other end is fastened to the

axle of a solid disk of mass M and radius R which rolls on a plane inclined at an

angle a to the horizon. Discuss the motion.

Solution. The motion of the system is known
if the acceleration of m is known. If T denotes

-T the pull of m on the string, then the resultant

force acting on m is mg T. The forces acting

on the disk are (1) the pull of the string T,

(2) the weight Mg, (3) the friction F at the

point of contact with the plane, (4) the normal

pressure N (not indicated in the figure) of the plane on the disk. The pressure

N acts normal to the plane at its point of contact with the disk. We suppose that

the friction is sufficient to prevent slipping. Then its point of application is the
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instantaneous center. Since at any instant this point is at rest, the work done by
the friction is zero. The work done by the normal pressure JV is also zero.

Supposing that TO starts from rest, moves through a distance s, and acquires the

velocity v, the energy equation gives

(1) \ mv2 = (mg T)s.

Applying the energy equation to M, we get (since v is the velocity of the cen-

ter of gravity of M)
(2) J Mv2 + \ /X = (- Mg sin a + T)s.

Now Ig = \ MS2
,
and = -

S
Hence /X = ^ Mv2

.

By substitution of this value (2) becomes

(3) | Mv2 =
(
- Mg sin a + 7>.

Adding (1) and (3) to eliminate the tension Z", we have

(4) Q m + f M>2 = (TO
- M sin a)gs.

In deriving equation (4) we added (in the second member) the work done

by all the forces acting on TO and the work done by all the forces acting on M.
The work done by T and T cancels

;
that is, for the system under consideration the

total work done by the internal forces is zero. Hence for this system we have the

THEOREM. The change in the total kinetic energy of the system is equal to

the work done by the external or impressed forces.

Differentiating (4) with respect to t,

(5) (TO + f Jf)
^ = (TO

- Msma^g^.
dt dt

Since v =
, and =/, equation (5) gives the acceleration of m, namely,

dt dt

(6) y_.O- Msina}g
m + 1M

To find the tension T we differentiate (1) with respect to t, cancel v = ,
and

dr>
^

substitute the value of/= from (6). The result is

dt

The magnitude of the frictional force which is necessary to prevent slipping

may be found from the moment equation. Taking moments with respect to the

axis of the cylinder, the moments of the forces Mg, N, and T are zero, and the

moment equation becomes

(7) J-F.B.

Since *=,E dt2 fidt2 R
Also J=J MB2

.

Substituting in (7), we obtain

F = - i Mf= - O
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PROBLEMS

1. A uniform cylindrical shot weighing 200 Ib. is fired from a rifled gun with

a velocity of 1000 ft. per second. Find the total kinetic energy at the muzzle if it

rotates 25 times per second, the diameter of the shot being 6 in. What must be

the average pressure during the discharge if the length of the gun is 7 ft. ?

Ans. K.E. = p^(25ir)
2 + 10s

] foot-poundals.

Pressure =
If (K.E.) poundals.

2. A uniform circular disk rotates about an axis through its center perpendicu-
lar to its plane. The disk weighs 16 T. and its radius is 3 ft. (a) What is the

kinetic energy when it is revolving at the rate of 200 revolutions per minute ?

(6) What constant tangential force must be applied to a crank 18 in. long to give
the disk this speed from rest in 1 min. ? (c) If the disk lifts a weight of 2 T. through
10 ft., what part of its K.E. is lost ? ioo 7r

2

Ans. (a) foot-tons, (c) 20 foot-tons.

3. A circular disk of mass mi is suspended by a horizontal axis passing

through its center. A flexible thread is wound around its exterior and carries a

mass m2 attached to its free extremity. Show that the angular acceleration is

- ^^
:

, where r = radius of disk. What distance will m2 fall from rest in t

r(2 m2 + nil)

seconds? Ant. h = m2-^
.

nil + 2 m2

4. A solid cylinder rolls down an inclined plane whose inclination is a. Show

that the linear acceleration of the center is constant and equal to f g sin a.

5. Compare the time of descent of the rolling cylinder in problem 4 with that

of a body which slides without friction. Ans. V3 : V2.

6. Two equal particles revolve in a horizontal plane around a vertical axis at

distances a and b. At what distance from the axis must both particles be placed

together in order that the K.E. may remain unchanged ? Ans. r2 = $ (a
2 + i>

2
).

7. A solid fly wheel weighs TFlb. and makesN revolutions per minute. Its

radius is r ft. and that of the axle c in. If the frictional retarding force on the axle

is F units per pound, find the number of revolutions before stopping.

Ans.
600 Fcg

8. A sphere weighing 100 Ib. rotates about a horizontal diameter, making
80 revolutions per minute. Find the K.E. Ang

40 ^r*
foot_pounds .

9

9. A solid sphere rolls down an inclined plane. Show that the acceleration

of the center is constant and equal to f g sin a.

10. Compare the times of descent of the cylinder (problem 4) and sphere

(problem 9) . Ans. VIB : VI4.



DYNAMICS OF A KIGID BODY 241

11. A uniform rod of length 2 a turns about a screw as in the figure. How
high will it rise if an angular velocity <a about the axis I is imparted to it ?

Ans. h = .

12. Show that the acceleration of the center of a hoop rolling

down a hill is g sin a.

13. Show that the acceleration of the center of a hollow

sphere rolling down a hill is f g sin a.

14. Compare the times of descent of a hollow and a solid

sphere rolling down an inclined plane. Ans. 5 : V2T.

15. Two bicyclists, riding exactly similar machines, coast

down a hill, starting with equal velocities at the top. Neglecting the forces of

friction and the resistance of the air, show that the heavier rider will reach the

bottom first.

16. A straight piece of uniform wire is stood vertically on end and allowed to

fall over. With what velocity does its extremity strike the ground ?

Ans. V3lg, I = length of wire.

17. A train of T tons descends an incline of s ft. in length having a total fall

of h ft. What will be the velocity at the bottom, friction being p Ib. per ton ?

Ans. v2 = 2 ah gps.
1000^

18. A uniform cylindrical rod 6 ft. long, radius 2 in., and density 5, is

suspended so that it swings freely in a vertical plane about one end. It is dropped
from a position making an angle of 30 with the vertical. Find the K.E. and an-

gular velocity as it passes through the vertical position.

Ans. . = l- foot-pounds,
2 2 2

19. A homogeneous cylinder of massMand radius a can turn around its axis,

which is horizontal. A fine thread supporting a mass m is wound around it. Find

the angular velocity of the cylinder when m has descended a distance h.

o 4 mqhAns. to* = 2 . .

a2 (M + 2m)

20. Show that a cylinder of altitude a and radius b rotating about its axis has

enough energy to raise a weight equal to its own through a vertical distance

21. A sphere whose radius is a ft. rolls without sliding down an incline of

30D
. If the mass of the sphere is m, find its velocity after rolling a distance s.

Find the time required to roll this distance. If the plane is 200 ft. long, what is the

velocity of the center of the sphere at the bottom of the incline ? How far up an

incline of 45 would it run ? ^ns% V2 = <>

gs
. p - L s . vi _ 10 9 .

200
ft

7 50
'

7
'

V2
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22. A bowling alley has a return trough 60 ft. long with a slope of 1 ft. in 15 ft.

(a) Neglecting friction, discuss the motion of a ball

whose radius is 4 in. and mass 8 Ib. when allowed to roll

from rest at the higher end. (ft) Suppose the trough is

triangular and the angle 90. The ball then rolls on two

points on its sides. Discuss the

motion.

Ans. (ffl)/ = -2-, (b)f=-
21 27

23. Two masses mi and m2 (TOI > m2) hang over a

smooth pulley by means of a flexible, inelastic thread whose

mass can be disregarded. Discuss the motion (a) leaving
out the mass ms of the pulley, (&) taking
account of the pulley's mass. LJ^te

24. A marble of radius a starting practically from rest at

the upper end of the vertical diameter, rolls off a sphere of

radius E. At what point will it cease to touch the sphere ?

Ans. After the center of mass has descended a vertical

7
distance = (R + a).

17

25. A uniform rod whose length is 2 b oscillates in a vertical plane about a

horizontal axis distant a from its center of mass. Find the length of the equivalent

simple pendulum. Find also the center of oscillation when the rod is suspended
from one end. ,__ , ~ . _&^ . /)/-f_4r

3a' 3
Ans. I = a H

26. A pendulum formed of a right circular cylinder of radius r and length h

oscillates about a diameter of one of its bases as a fixed horizontal axis. Find the

Period. A^ r=2?r /3r2 + 4/i2

* 6gh

27. Suppose the cylinder in problem 26 falls from the vertical position above

the point of support. What is its angular velocity when it has turned through an

angle of = f w ? What should be its angular velocity at the lowest point in order

that it may just rise to its original position ? . 2

28. A circular lamina of radius r oscillates (a) about a tangent lying in its

plane, (6) about a line through the circumference perpendicular to its plane. Find

in each case the length of the equivalent simple pendulum.
Ans. (a) Z = f r; (6) Z = |r.

29. A cube whose edge is a swings as a pendulum about a horizontal edge.

Find the length of the equivalent simple pendulum and the period.

Ans. l =

30. A circular arc oscillates about an axis through its middle point perpendic-

ular to its plane. Show that the equivalent simple pendulum is independent of the

length of the arc and equal to twice the radius.
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31. A given sphere has a radius of 6 in. If the axis of revolution is a hori-

zontal tangent, find the moment of inertia and show that the length of the equiva-

lent simple pendulum is 8.4 in.

32. A right circular cone of height h and radius r oscillates about a horizontal

axis perpendicular to its own axis at the vertex. Show that the length of the

" + r
equivalent simple pendulum is

33. A square whose side is a oscillates about a horizontal axis perpendicular

to its plane. How far from the center of the square is this axis when the period has

a minimum value ? . a

Vfi

34. Find the axis about which an elliptic lamina must oscillate that the time of

an oscillation may be a minimum.

Ans. The axis must be parallel to the major axis and bisect the semiminor axis.

35. A heavy disk weighing W Ib. is set in motion by a

weight P as indicated in the figure. The radius of the disk is a

and that of the axle is b. The mass of the axle may be disregarded

in comparison with that of the disk, (a) What is the angular

velocity of the disk when P has descended h ft. ? What time is

required ?

36. A cord passes over a smooth peg as shown in the figure.

To one end of the cord is attached a mass m which falls

vertically, and the other end is fastened to the axle of

a solid cylinder of mass M and radius R which rolls on

a horizontal plane. Find the acceleration of m and the

frictional force. . ._ mg

37. In problem 36 suppose M is a solid sphere.

38. In problem 36 suppose M is a hollow sphere.

39. A cord passes over a smooth peg as shown in the figure. To one end of

the cord is attached a mass m which falls vertically and

the other end is wrapped around a solid cylinder which

rolls on a horizontal plane. Find the acceleration of m.

40. In problem 39 suppose M is a hollow cylinder of negligible thickness.

p 41. Suppose the cylinder of problem 36 rolls on a

plane whose inclination is a.. Find the acceleration of m
and the frictional force. A (TO M sin a)g

42. In problem 41 suppose M is a solid sphere.
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43. In problem 41 suppose M is a hollow sphere.

44. Suppose the cylinder of problem 39 rolls on a plane
whose inclination is a. Find the acceleration of m.

Ans (2m Msin a}g
2 m + |M

45. In problem 44 suppose M is a hollow cylinder of

negligible thickness.

46. In problem 41 suppose m and M given. Determine the inclination a so

that the acceleration of m is zero. . m
^1/tO. bill (JC

*

M
47. Two masses m and m' suspended from a wheel and axle do not balance.

The radius of the wheel is a, and that of the axle is b. Show that the acceleration

of m is -^^ m ' aQ
,
where 7 is the moment of inertia of the machine about its

ma2 + m'b'2 + I

axis.

48. The handle of a wheel and axle is let go just as a bucket full of water

weighing 60 Ib. reaches the top of a well 18 ft. deep, and the bucket gets to the

bottom again in 6 sec. If the axle is 6 in. in diameter, find the moment of inertia

of the wheel and axle. Ans. 116.25.

49. A prism whose cross section is a square, each side being a, and whose

height is h, oscillates about one of its upper edges. Find the length of the equiva-

lent simple pendulum. Ans. 2 Va'2 + h'2.

50. A uniform cylinder has coiled around its central section a light, perfectly

flexible string. One end of the string is attached to a fixed point, and the cylinder

is allowed to fall. Show that it will fall with acceleration | g.

51. An elliptic lamina swings about a horizontal axis which passes through
one focus, is perpendicular to the major axis, and lies in the plane of the ellipse.

The other focus is the center of oscillation. Prove that the eccentricity is

52. Two smooth planes are placed back to back, as

shown in the figure. The body M% slides down the plane

of inclination 2 > and by means of a cord passing over a

pulley of mass MI draws the cylinder of mass MS up the

plane of inclination tts. Supposing the cylinder rolls

without slipping, determine the acceleration.
'Ans

^ ff(- 2̂ 8m a2 ~ -^ sm
Mi + 2M2 + 3 Ms
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113. Equilibrium of forces. If a system of forces acting upon
a body produces no change of motion, the forces are said to be in

equilibrium ; and if the body is initially at rest, it will remain at

rest under the action of a system of forces in equilibrium. The

part of mechanics which deals with systems of forces in equilib-

rium is called statics. Assuming that the body is initially at rest,

the problem of statics is the determination of the conditions upon
the forces acting in order that the body shall remain at rest.

114. Analytic conditions for equilibrium of coplanar forces.

Consider a uniplanar motion with the following characteristics :

(a) the center of gravity moves in a straight line with constant

speed; (6) the angular velocity remains constant. Referring to

the fundamental equations ((V), Chapter XII)

W
~di?

= "

G) 1
M

~dP
=F*

then by the hypothesis (a) =
f
= 0, and by (5) = 0.

Hence for the motion described

(2) ^=0,^ = 0, =0,

that is, the sum of the axial components of all forces acting is zero,

and the resultant moment with respect to the origin of all forces act-

ing also vanishes.

Next assume a system of coplanar forces (that is, whose lines

of action lie in a plane) such that equations (2) are satisfied.

245
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Suppose these forces act upon a rigid body whose previous motion

(
= 0) possessed the characteristics (a) and (6), assuming that the

directing plane is parallel to the plane of the forces. Then, since

by (1) we have to integrate

^=0, ^=0, ^=0,
dt2

'

dt*
' '

dt*

it is clear that the center of gravity will continue to move uni-

formly in a straight line, and further that the angular velocity

will be unchanged. Hence the motion is entirely unchanged. It is

also clear that such a system of forces will not disturb the body if

it is initially at rest.

Hence the

THEOREM. A system of coplanar forces is in equilibrium if and

only if (1) the sum of the ^-components of all the forces is zero, (2)
the sum of the Y-components of all the forces is zero, (3) the sum of

the moments with respect to the origin of all the forces is zero.

If the forces be denoted by F^ F2 , Fn , the angles which

their lines of action make with the Jf-axis by av 0%, an , and

the lever arms with respect to the origin by dv d
2 ,

dn ,
the con-

ditions for equilibrium may be written

{F
x = F1

cos
etj + F2 cos

2 + Fn cos = 0,

Fy
= F

1
sin aj + F2

sin
2 + Fn sin an = 0,

L = F,d, + F2
cl
2 + - Fndn

= 0.

The first two equations are the conditions that the acceleration of

the center of gravity shall be zero, and the third is the condition

that the angular acceleration shall be zero.

Since any point in the plane may be chosen for the origin and

since any line through the origin may be taken for the JT-axis, we
see that if a system of forces is in equilibrium, (a) the sum of the

components in any direction is zero, (5) the sum of the moments
with respect to any point is zero. And conversely, if (a) and (6)
are satisfied, the system is in equilibrium.

From (3) we may deduce other forms of the conditions of

equilibrium which are convenient in applications.
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I. A system of forces is in equilibrium if the sum of the compo-
nents along any two intersecting (jiot coincident^) straight lines is zero,

and the sum of the moments with respect to one

origin is zero.

Proof. The second part of I is. the con-

dition L = 0. To prove the first part, let the

two lines be OX and OA, and denote the angle
XOA by fi. The sum of the components

along- OX is O *

(4) F
l
cos

! + F2 cos
2 + Fn cos an = Fx = 0.

The sum of the components along OA is

(5) F1
cos (j /3) + F2

cos (c^ /3) + Fn cos ( w #) = 0.

Equation (5) may be written in the form

F
1
cos

!
cos /3 + F1

sin
j
sin @ + F2

cos
3
cos ft + F2

sin
2
sin /3

+ Fn cos w cos /3 + Fn sin sin /3 = 0.

Since Fx =^ FI cos F
y
= ^ F

t
sin

f , this equation becomes

Since by (4) Fx = and /3 ^= by hypothesis, this equation gives

Hence (4) and (5) are equivalent to the first two of equa-

tions (3). Q.E.D.

II. A system offorces is in equilibrium if the sum of the moments

is zero for each of two origins, and C, and the sum of the com-

ponents is zero in any direction not perpendicu-
lar to 00.

.O Proof. Take the point for origin of

coordinates, and the JT-axis parallel to the

direction of resolution.

Y Let the point of application of F
l

be

(>!, ^). Then (Art. 62),

(6) moment of F
l
with respect to = L^ =

x-? sin a <? cos a
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and similarly,

(7) moment of F
l
with respect to (7(6, c) =

(a?! b)F1
sin a

x (yx c')F1 cos a
l
=

L bF
l
sin a

l + cF
l
cos ar

Hence by summing up, if i = sum of moments with respect
to 0, we shall have, using (3),

(8) Sum of moments with respect to C= L lF
y + cFx .

This vanishes by hypothesis. Also L = 0, Fx = by hypothesis.
Hence F

y
= and (3) hold. Q.E.D.

III. A system of forces is in equilibrium if the sum of the

moments is zero for each of three origins not

on the same straight line.

rt
'

lbci
Let the three centers of moments be (9(0, 0),

u4(a, 0), and (7(5, c). Then if the moments
of the force F are, respectively, Lv L'v L'[,

we shall haveA X
(a.o) .

1/1
= x^\ sin aj y^b\ cos av

t)F^ sin a
x ^-Fj cos a^

= L
l

aF
l
sin a

x ,

sin aj (^ c^)Fl cos ax
=i

x 5-Fj sin a
x+ C-Fj cos a

x
.

Summing up .for all th,e forces, arid denoting these sums by L, L'
,

L", then, using (3),

L' = L - aF
y , L" = L- bF

y + cFx .

The hypothesis L = L' = L" = leads to the condition Fx = 0,

Fy
0. Q.E.D.

In any problem of statics either I, II, or III may be used.

The choice depends upon the convenience for the particular

problem.
A special condition which is important in the applications may

be derived when the number of forces is three. Let the forces be

denoted by Fv Fv and F
s

. There are two cases to be- considered.

(1) Suppose the lines of action of F
l
and F

2
intersect in the

point 0. Taking moments with respect to 0, we have

moment of F
1
= moment of F

z
= 0,

and, for equilibrium,

moment of F
1 + moment of F%+ moment of F

3
= 0.
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Hence moment of F
z
= 0, which means that the line of action of

F
s
must pass through 0. The first two conditions of equilibrium

(3) simply assert that the vector sum of the three forces is zero.

(2) Suppose the lines of action of F
l
and _F

2 are parallel. Let

the axis OX be parallel to the lines of action of F
1
and F

z
. Tak-

ing components in the direction of the 1^-axis, we have

Fto = F*,= 0,

and, for equilibrium,

-^ly + F<ly + FM = 0-

Hence FZv
= 0, which means that _F

3 is parallel to the JT-axis.

Hence the

THEOREM. If three coplanar forces are in equilibrium, their

lines of action are concurrent or parallel and their vector sum is zero.

115. General method of solving problems in equilibrium. The

general problem of equilibrium of a system of forces is the follow-

ing : given a body or system of bodies acted upon by a system of

forces of which some are known, to determine the unknown forces

so that the system is in equilibrium. For the solution we have

the three conditions of equilibrium as expressed by I, II, or III

and such geometric conditions as may be implied in the statement of

the problem. Most problems of statics can be solved in different

ways and the best method is to be found only by experience.

The general method of procedure is indicated in the following

steps :

(1) Draw a figure showing the body acted upon and represent

by vectors all the forces acting.

(2) Enumerate all the forces acting, specifying the magnitude
and direction of each so far as known.

(3) Write the three conditions of equilibrium, using I, II, or

III to make the equations as simple as possible.

(4) If the equations of equilibrium are sufficient to determine

the unknown quantities, solve them.

(5) If not, write as many equations as possible from the

geometric conditions.

(6) If the problem is determinate, the number of static and

geometric equations is sufficient to determine the unknown quanti-

ties by algebraic solution.



250 THEORETICAL MECHANICS

ILLUSTRATIVE EXAMPLES

1. A heavy uniform rod, AB, is fastened at A with a smooth hinge and is sup-

ported in a horizontal position by a string attached at B and making an angle a
with the horizon. Determine the tension in the string and the magnitude and

direction of the force exerted by the hinge.

Solution. Following the steps indicated above we

ir
/ (1) draw the figure.
B

(2) The forces acting on the rod are three : (i) the

known weight W acting downwards at 0, the middle

point of AB, (ii) the tension T of unknown magnitude,

acting at B in a direction indicated by the angle a, (iii) the force P of the hinge at

A, unknown in magnitude and direction.

(3) Since the number of forces is three, we may conclude from the theorem of

Art. 114 that DB and FA intersect in a point E vertically under 0. This deter-

mines the direction of the force P, since the angle FAO is TT .

Resolving the forces in directions parallel and perpendicular to OB, we have

Tcos Pcos a = 0,

Tsin a + Psin W - 0.

The moment equation has been used in applying the theorem of Art. 114.

W
(4) The solution of equations (1) gives T=P = ^ cosec a.

m

2. A uniform rod AB rests with the end A against the corner of a smooth *

horizontal floor and a smooth vertical wall. At the end B two strings are attached

of which one is fastened to a point C in the wall. The

other passes over a smooth peg at D in the floor, making
ABD a right angle, and supports a weight T. The weight

of the rod is W pounds and the tension in BC is F pounds.

Determine the weight Tand the pressures at A.

Solution. (1) In the figure the middle point of AB
is the center of gravity of the rod, a is the inclination of

AB to the horizon, and /3 is the inclination of BC to the

horizon.

(2) The forces acting on the rod are five in number : (i) the weight W acting

downwards at the middle point of AB, (ii) the known tension F in BC, (iii) the

tension T in BD, unknown in magnitude, (iv) the pressure PI of the vertical wall

at A, unknown in magnitude, (v) the pressure P2 of the floor at A, unknown in

magnitude.

(3) For the equations of equilibrium we shall use II. Resolving in a horizontal

direction,

(1)
- J'cos/S + PI + Tsin = 0.

Taking moments about A and denoting the length of the rod by I,

\ Wl cos Tl + Fl sin (ec + )
= 0,

* A surface is denned as smooth if it can exert pressure only in the direction of the

normal to the surface.
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or,

(2)
-

| Wcosa T + Psin(a + /3)
= 0.

Taking moments about P.,

Wl cos P2 Z cos -f- PI? sin a = 0,

or,

(3) | TFcos a - P2 cos a + P! sin = 0.

(4) The three equations of equilibrium are sufficient to determine the three un-

known quantities P1? P2 , and T. From (1), (2), and (3) we find

T= Psin (a -f/3) \ TFcos a.

PI = [Pcos(a+) + \ W sin a] cos a.

P2 = Pcos(a + /3)sin+i 17(1 + sin2 a).

3. A light rigid rod rests partly within and partly without a hemispherical

smooth bowl, which is fixed in space. A weight W is clamped on to the rod at a

point C within the bowl. Determine the position of equilibrium and all forces act-

ing on the rod. ,-\

Solution. (1) The figure represents a section cut

from the bowl by the vertical plane determined by the

center and the rod AF. The position of equilibrium

is known if the inclination 6 of AB to the horizontal is

known.

(2) The forces acting on the rod are three in number : (i) the weight W acting

downwards at C, (ii) the unknown pressure PI of the surface of the bowl at A,

acting in the direction of the normal, (iii) the unknown pressure P2 of the edge of

the bowl at P., acting in a direction perpendicular to AF.

(3) For the equations of equilibrium we shall use I. Resolving in a horizontal

direction,

(1)
- P2 sin0 + P!cos0 = 0.

Resolving in a vertical direction,

(2) P2 cos 6 + PI sin
<f> W= 0.

Taking moments about A, denoting the known distance AC by I and the unknown
distance AB by a;,

(3) Wl cos + P2x =0.

(4) The unknown quantities in (1), (2), and (3) are PI, P2 , 0, <j>, and x. Hence

we require some geometric conditions.

(5) Since the curve DAB is a semicircle, the normal at A passes through
and it follows that = 2 6. Also, since AB is a chord of the circle,

AB = x = 2 r cos 0,

where r denotes the radius.

(6) Substituting the values of <p and x in (1), (2), and (3), respectively, we
obtain

(4) P2 sin PI cos 2 = 0,

(5) P2 cos + PI sin 2 = W,

(6) 2 rP2
- TFZ = 0.
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Solving (4), (5), and (6), we find

PI = TFtanfl, P2= 1O.
2r

It may be remarked that the angle of equilibrium does not depend on the mag-
nitude of the weight attached to the rod.

PROBLEMS

1. A rod AB is hinged at A and supported in a horizontal position by a

string BC making an angle of 45 with the rod. A weight of 10 Ib. is suspended
from B and the weight of the rod may be neglected. Find the tension in the string
and the force at the hinge. Ans. 10V2 10 Ib

2. A wheel capable of turning freely about a horizontal axis has a weight of

2 Ib. fixed to the end of a spoke whicn makes an angle of 60 with the horizon.

What weight must be attached to the end of a horizontal spoke to prevent motion

taking place ?

3. Two weights, P and Q, rest on a smooth double inclined plane as shown in

the figure, and are attached to the extremities of a string which passes over a smooth

peg at a point vertically over the intersection of the planes, the peg and the

weights being in a vertical plane. Find the position of equilibrium.

Ans. The position of equilibrium is given by the equations

p sin a __ Q sin /3

cos 9 cos </>'

cos a cos j3 _ l^

sin 6 sin h'

where I is the length of the string and h = CO.

4. A bar of mass 15 Ib., whose center of gravity is at its middle point, rests

with its ends upon two smooth planes inclined to the horizon at angles of 36 and

45 respectively. Determine the inclination of the bar to the horizon when in

equilibrium, and the pressures exerted upon it by the supporting planes.

Ans. 10 39', 8.93 Ib., 10.74 Ib.

5. A uniform rod 15 in. long and weighing 12 Ib. has a weight of 10 Ib.

suspended from one end. At what point must the rod be supported that it may just

balance ? Ans. 4^T in. from the weight.

6. Prove that three forces acting at the middle points of the sides of a triangle

perpendicularly inwards, and proportional to the lengths of the sides, are in

equilibrium.

7. Extend the theorem of problem 6 to a plane polygon of any number of

sides.

8. ABCD is a plane quadrilateral, P and Q are the middle points of the oppo-

site sides AB and CD, and is the middle point of PQ. Prove that the four forces

represented by OJ., OB, OC, OZ>, respectively, are in equilibrium.
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9. A uniform beam of weight W and length 3 ft. rests in equilibrium with its

upper end A against a smooth vertical wall, while its lower end B is supported by a

string, 5 ft. long, whose other end is attached to a point C in the wall. Find AC
and the tension in the string. 4 e,/o

Am. AC=K.,T=W.
V3 8

10. ABCD is a plane quadrilateral. Forces act along the sides AB, BC, CD,
DA, measured by , /3, 7, 5 times those sides respectively. Show that if these forces

are in equilibrium, then ay = /35 .

11. A bar AB, whose center of gravity is at its middle point and whose mass

is 12 lb., is supported in a horizontal position by strings attached to the ends, and

sustains loads of 16 lb. and 20 lb. at A and B respectively. If the string at A is in-

clined 45 to the horizon, what is the inclination of the string B ? Find the tensions

in the strings. Ans. 49 47^ 31 12 lb., 34.05 lb.

12. Three smooth pegs A, B, C stuck in a wall are the vertices of an equilateral

triangle, A being the highest and the side BC horizontal. A light string passes once

around the pegs and its ends are fastened to a weight W which hangs in equilibrium

below BC. Find the pressure on each peg.

13. A weightless string is suspended from two fixed points and at given points

on the string equal weights are attached. Prove that the tangents of the inclina-

tions to the horizon of different portions of the string form an arithmetic progression.

14. A uniform yardstick weighing 10 oz. is supported in a horizontal position

by the thumb at one end and the forefinger at a point 3 in. from the end. What is

the pressure on the thumb and on the finger ? ^ns. 50 oz. 60 oz.

15. A beam AB weighing \ T. per running foot and 18 ft. long is loaded with

4 T. at A and 5 T. at B. It is supported at points 4 ft. from A and 6 ff. from B.

Find the supporting forces P and Q. ^ns. P = 54 T., O = 12| T.

16. A uniform rod of weight 50 lb. and length 18 ft. is carried on the shoulders

of two men who walk at distances of 2 and 3 ft., respectively, from the two ends. A
weight of 50 lb. is suspended from the middle point of the rod. Find the total

'weight carried by each man.

17. A uniform plank 20 ft. long, weighing 42 lb., is placed over a rail, and two

boys weighing 75 and 99 lb., respectively, stand each at a distance of 1 ft. from each

end. Find the position of the plank for equilibrium.

Ans. 1 ft. from the middle point.

18. Two equal weights, P, Q, are connected by a string which passes over two

smooth pegs A, B, situated in a horizontal line, and supports a weight W which

hangs from a smooth ring through which the string passes. Find the position of

equilibrium. W
Ans. The depth of the ring below the line AB is

19. A light rod rests wholly inside a smooth hemispherical bowl whose radius

is r, and a weight W is clamped on to the rod at a point whose distances from the

ends are a and b. Show that, if be the inclination of the rod to the horizon in the

position of equilibrium, then
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20. Two weights, P and Q, rest on the concave side of a parabola whose axis is

horizontal, as shown in the figure, and are connected by a light string, of length I,

which passes over a smooth peg at the focus F. Find the posi-

tion of equilibrium.

Ans. If is the angle which FP makes with the axis, and

4 m is the latus rectum of the parabola, then

21. In problem 20 show that the depths of the weights below the axis are pro-

portional to their masses.

22. A particle is placed on the convex side of a smooth ellipse, and is acted

upon by two forces F and F', towards the foci, and a force F", towards the center.

Find the position of equilibrium.

Ans. r = = , where r is the distance of the particle from the center of the

Vl-n2

ET _ CT

ellipse, b is the semiminor axis, and n =--

116. Friction. A smooth surface is defined as one which can

exert upon a body in contact with it only a pressure in a direc-

tion normal to the surface. Such surfaces do not exist in nature.

Suppose a heavy box is at rest upon a horizontal table. If the

table were smooth, the box could be moved by any horizontal

pull, the acceleration being, by Newton's Second Law of Motion,

directly proportional to the force and inversely proportional to

the mass of the box. Experiment shows, however, that this is

not true. If the horizontal pull is slight, no motion ensues, and

consequently the forces acting on the box are in equilibrium..

The forces acting are three in number: (i) the weight acting

vertically downwards, (ii) the horizontal pull JST, and (iii) the

pressure of the table. From the principles of equilibrium it

follows that the pressure of the table must be made up of two

components, of which one, numerically equal to the weight, acts

vertically upwards, while the other is numerically equal to If but

opposite in direction. A rough surface can exert upon bodies in

contact with it a pressure made up of (1) a component normal

to the surface called the normal pressure, and (2) a component

tangent to the surface called the friction. All physical surfaces

are more or less rough.
Our knowledge of frictional forces is obtained by experiment

and is expressed in the following
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LAWS OF FRICTION. 1. If the body is in equilibrium, the fric-

tion is equal and opposite to the tangential component of the applied

forces. In the preceding example there is no friction if there is

no horizontal pull.

2. No more than a certain amount of friction can be called into

play. The value of the friction when sliding is just about to take

place is called the limiting friction.

3. The magnitude of the limiting friction bears a constant ratio

to the normal pressure. This constant ratio, /*, is called the

coefficient of friction, and its value depends upon the nature of

the surfaces in contact.

4. The coefficient offriction is independent of the area of contact

of the two bodies if the touching surfaces are uniform in character.

The angle of friction, \, is defined by (Art. 67)

tan \ = fji.

The coefficient of friction for various substances has been

determined by experiment and some of the results are given in

the following table of values for /* :

Wood on wood, dry 0.25 to 0.5

Wood on wood, soaped 0.2

Metals on oak, dry . . . . . . 0.5 to 0.6

Metals on oak, wet 0.24 to 0.26

Metals on oak, soaped . . .

-

. . . 0.2

Leather on oak, wet or dry ..... 0.27 to 0.35

Metals on metals, dry 0.15 to 0.2

Metals on metals, wet . . . . . . 0.3

Smooth surfaces, occasionally lubricated . . . 0.07 to 0.08

Smooth surfaces, thoroughly lubricated . . . 0.03 to 0.036

The values of p given above are the coefficients of static fric-

tion as defined in 3. The coefficient of dynamic friction (see

Art. 67) is slightly less in numerical value than the coefficient of

static friction.

ILLUSTRATIVE EXAMPLE. A uniform rod rests with one end on a rough hori-

zontal floor and the other against a rough vertical wall. Supposing the coefficient

of friction to be the same at both ends, determine the least inclination it can make
with the horizon.
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Solution. (1) In the figure, AB is the rod which is just about to slide down.

(2) The forces acting on the rod are five in number : (i) the known weight W
acting vertically downwards at (7, (ii) the normal pressure R of the floor, unknown
in magnitude, acting vertically upwards at A, (iii) the friction at A, of magnitude

nR and acting in the direction AD, (iv) the normal pressure
R' of the wall at B, unknown in magnitude, (v) the friction

/j.JR' at B acting vertically upwards.

(3) For the conditions of equilibrium we shall use I,

Art. 114. Resolving in a horizontal direction,

(1) R' = nR.

Resolving in a vertical direction,

(2) R + pR' = W.

Taking moments about A, and denoting the length of the rod by ?,

| Wl cos nR'l cos 6 - R'l sin 6 = 0,

or,

(3) \ W cos 6 = R' (fj. cos + sine).

(4) From equations (1), (2), and (3) we eliminate R and R', and solve for 0.

The result is

PROBLEMS

1. A body of mass W pounds is at rest upon a plane making an angle 6 with

the horizon. A cord attached to this body runs parallel to the plane, passes over a

smooth pulley, and sustains a weight of P pounds. Determine the magnitude and

direction of the friction, the normal pressure, and the total pressure exerted by the

plane upon the body.

2. In problem 1 let W = 50 lb., P= 40 lb., = 32, and suppose the body is

just about to slide up the plane. Determine the coefficient of friction.

Ans. M = 0.318.

3. The roughness of a plane of inclination a is such that a body of mass W
can rest on it. Find the least force required to draw the body up the plane.

Ans. W sin 2
, inclined at an angle a to the plane.

4. A uniform beam rests with one end on a rough horizontal plane and the

other against a rough vertical wall, and, when inclined to the horizon at an angle

of 30, is on the point of slipping down. Supposing that the surfaces are equally

rough, determine the coefficient of friction. A
'' M ~V3

5. A body of 30 lb. mass, resting on a plane inclined 45 to the horizon, is pulled

horizontally by a force P. If the coefficient of friction is 0.2, between what limits

may the value of P vary and still permit the body to remain at rest ?

Ans. 20 and 45 lb.

6. On a rough plane of inclination the greatest value of the force acting along

the plane and producing equilibrium is double the least. What is the coefficient of

friction? Ans. /*=$tan0.
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7. If the angle of friction is 30, what is the least force which will sustain a

weight of 100 Ib. on a plane whose inclination is 60 ? Ans. 50 lb.

8. A ladder inclined at an angle of 60 to the horizon rests with one end on a

rough pavement and the other against a smooth vertical wall. The ladder begins
to slide down when a weight is put at its middle point. Show that the coefficient of

friction is p
6

9. A uniform ladder weighing 100 lb. and 50 ft. long rests against a rough
vertical wall and a rough horizontal plane, making an angle of 45 with each. If

the coefficient of friction at each end is |, how far up the ladder can a man weigh-

ing 200 lb. ascend before the ladder begins to slip ? Ans. 47 ft.

10. A heavy body is placed on a rough plane whose inclination to the horizon

is arc sin f ,
and is connected by a string passing over a smooth pulley with a body

of equal weight which hangs freely. Supposing that motion is on the point of ensu-

ing up the plane, find the inclination of the string to the plane, the coefficient of

friction being 0.5. Ans. 6 =2 arc tan \.

11. Two weights rest on a rough inclined plane and are connected by a string

which passes over a smooth peg in the plane. If the angle of inclination is greater

than the angle of friction e, show that the least ratio of the less to the greater is

sin (a e)/sin (a + e).

12. Two equal weights are attached to a string laid over the top of two inclined

planes, having the same altitude, and placed back to back, the angles of inclination

of the planes being 30 and 60 respectively. Show that the weights will be on the

point of moving if the coefficient of friction between each plane and weight be

1

2 + V3~

13. A body is supported on a rough inclined plane by a force acting along it.

If the least magnitude of the force, when the plane is inclined at an angle a to the

horizon, be equal to the greatest magnitude when the plane is inclined at an angle

/3, show that the angle of friction is i( /3).

14. A cubical block rests on a rough plank with its edges parallel to the edges

of the plank. If, as the plank is gradually raised, the block turns over on it before

slipping, what is the least value of the coefficient of friction ?

15. It is observed that a body whose weight is known to be W can be just sus-

tained on a rough inclined plane by a horizontal force P, and that it can also be

just sustained on the same plane by a force Q up the plane. Express the angle of

friction in terms of these known forces. _ PW

16. It is observed that a' force Qi acting up a rough inclined plane will just

sustain on it a body of weight W, and that a force Q-2 acting up the plane will just

drag the same body up. Find the angle of friction.

Ans. X = arc sin -
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17. A heavy uniform rod rests with its extremities on the interior of a rough
vertical circle. Find the limiting position of equilibrium.

Ans. If 2 a is the angle subtended at the center by the rod, and X the angle of

friction, the limiting inclination of the rod to the horizon is given by the equation

tan = sin 2X
cos 2 X + cos 2 a

18. An insect tries to crawl up the inside of a hemispherical bowl of radius a.

How high can it get if the coefficient of friction between its feet and the bowl is | ?

19. Two equal rings of weight W are movable along a curtain pole, the coeffi-

cient of friction being p. The rings are connected by a loose string of length 7, which

supports by means of a smooth ring a weight Wi. How far apart must the rings be

so that they will not come together ?

117. Equilibrium of flexible cords. It is assumed that the

cords discussed in this article are inextensible arid perfectly
flexible. The cross section is supposed to be small so that we

may consider the curve formed by the cord. For a perfectly
flexible cord in equilibrium it is evident that the resultant force

at any point must act in the direction of the tangent to the curve

formed by the cord. We wish to investigate the form of the

curve assumed by a cord which is fastened at both ends and which

sustains a weight distributed according to a given law. Since

the cord is in equilibrium it is evident that, if any segment be

replaced by a rigid wire of the same shape and bearing the same

load, the system would still be in equilibrium. In order to deter-

mine the form of the curve we may
consider any segment and treat it as a

rigid body.
Let the plane of the cord be the XY-

plane with the I^-axis directed vertically

upwards, and let co be a function (of the

coordinates or length of arc) represent-

ing the distribution of weight along the

cord. Consider any segment PjP2
.

This segment is in equilibrium under the action of three forces :

(i) the tension Tv directed along the tangent to the curve at P
x ;

(ii) the tension T
2, directed along the tangent at P2 ; (iii) the

weight W acting vertically downwards at (7, the center of gravity
of the load of the segment. The weight W along the segment
P

X
P2 is the difference of values of the function a> at P

2
and Pr

that is W= <w
2 o)j.



EQUILIBRIUM OF COPLANAR FORCES 259

Let <j and <
2 denote the inclinations of the tangents to the curve

at P
1
and P

2 respectively. Resolving in a horizontal direction,

(1) TI cos <j = T
2
cos

</>2
.

Resolving in a vertical direction,

(2) T
z
sin

</>2
=

T-^
sin <

x + W.

Since P
1
and P2 are any points on the curve, equation (1)

shows that the horizontal component of the tension is the same at

every point of the curve, and this is evidently equal to the tension

at the lowest point. Denoting the constant horizontal component
of the tension by IT, we have, from (1),

m _ H- rn _ -tL
_/.

-| ,
-i o ~ .

COS
^>j

COS
(f)^

With these values of T and T.2 we may write equation (2) in

the form

SQ\ JL J. ^^~ ^^ 1

The function &> is supposed to be known for every point of the

curve. If H and the slope <j at some one point Pl
has been

determined, equation (3) may be used to determine the slope <f>2

at any second point P2
.

In order to determine the shape of the curve we must find the

differential equation which characterizes it. Let denote the

length of arc measured from some fixed point on the curve, s
x
and

s
2 being the distances to P

l
and P

2 respectively. Dividing both

members of equation (3) by s
2

s
x , we have

/- i
N tan <69 tan d>,

(4) ^ 3U
S
2

8
1

Now let P
2 approach Pl along the curve. Then s2 j approaches

zero as a limit, the first member of equation (4) approaches

^ an ^
, and the second member approaches -^ . Hence the

ds H ds

differential equation of the curve is

A rv d (tan <) _ 1 dco

~dT -JfTs'

When co is given, the ordinary equation of the curve is found

by integrating equation (5) and determining the constants by
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means of the initial conditions. In the following articles we con-

sider the two cases which are most important in applications.

118. The common catenary. The curve assumed by a heavy
cord or by a cord carrying a weight distributed uniformly along
the cord, is called a catenary. If w denotes the weight supported

by unit length of the cord, then

ft) = W8,

and the differential equation of the curve [(5), Art. 117] becomes

d (tan <) _ w~~
Since tan

<f>
is the slope of the curve we have (Calculus, p. 86)

tan <f> = -f- .

ax

Now,

(y\
d_fdy\ = d_ fdy\ dx = dx\dx)

f (Calculus , 142)
as \dxj dx \dxj as I 2

Writing -^ = p, and^.= -, equation (1) becomes
dx He

(2\ dp _ dx

Vl + p*
c

Integrating,

(3) log (p + VF+72
) =-+<?r

To determine the constant of integration cv we select the axes

so that the y-axis passes through (7, the lowest point of the cate-

nary. The distance of the origin below G will

be determined later. Since the tangent to the

curve at O is horizontal, ^ = p = 0, when
dx

x = 0. Hence c = 0, and equation (3) may
X be written in the form

p + Vl +p2 = e
c

Solving for p,
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Integrating,

We now determine the distance 00-so that the constant of

integration <?
2 is zero. If, when x = 0, y = OC = c, then c

z
= 0.

Hence the

THEOREM. The equation of the catenary is

GO J^fC/f-'-Oi

where c, the intercept on the Y-axis, is the ratio of the horizontal

tension to the weight per unit length.

119. Load distributed uniformly along the horizontal. This is

the case of the cables supporting a suspension bridge if the weight
of the cables is neglected in comparison with that of the bridge.

When a cord supports a load distributed uniformly along the

horizontal, the weight supported by any segment is proportional
to the length of the projection of the segment on a horizontal

line. If w' denotes the weight per horizontal unit, then

<a = w'x,

and the differential equation of the curve [(5), Art. 117] becomes

.-, -v 'c?(tan <) _ d fdif\ dx _ w' dx

ds dx\dx) ds lids

w'
Setting =

<?', equation (1) takes the formH
(2)

d̂ y= C '.

dx*

In order to determine the constants of integration, we choose

the origin at the lowest point of the curve. The initial condi-

tions are y = 0,
-^ = 0, when x = 0. Integrat-
dx

ing (2) and imposing these conditions, we find

for the equation of the curve

(3)

This equation represents a parabola with its axis vertical and

latus rectum = c'. Hence the
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THEOREM. The curve assumed by a cord carrying a weight dis-

tributed uniformly among the horizontal is a parabola with its axis

vertical and latus rectum equal to
|<?',

where c' is the ratio of the weight

per unit horizontal distance to the horizontal tension,

PROBLEMS

1. If s denotes the arc of the catenary measured from the lowest point, and <j>

is the inclination of the tangent to the horizon, prove the following relations :

(a) s = c tan 0,

(6) y = c sec <,

(c) r/
2 -s2 = c2.

2. A cord hanging in the form of a catenary [(4), Art. 118] sustains a load of

50 Ib. per foot, and the tension at the lowest point is 1000 Ib. The points of sus-

pension are in the same horizontal line 100 ft. apart. Find (a) the coordinates of

the points of suspension, (6) the length of the cord, (c) the direction of the cord

at the points of suspension. Ans. (a) ( 50j 122.6), (6) 241.8, <f>
= 80 37'.

3. A uniform measuring chain of length I is tightly stretched over a river, the

middle point just touching the surface of the water, while each of the extremities

has an elevation k above the surface. Show that the difference between the length
Q U

of the measuring chain and the breadth of the river is nearly- .

3 I

4. A chain 110 ft. long is suspended from two points in the same horizontal

plane, 108 ft. apart. Show that the tension at the lowest point is nearly 1.477

times the weight of the chain.

5. A heavy chain hangs over two smooth fixed pegs. The two ends of the

chain are free and the central portion hangs in a catenary [(4), Art. 118]. Show
that the free ends are on the JT-axis.

6. A heavy uniform chain is suspended from two fixed points A and B in the

same horizontal line, and the tangent at A makes an angle of 45 with the horizon.

Prove that the depth of the lowest point of the chain below AB is to the length of

\/2 1
the chain as-.

7. If and /3 are the angles which a uniform heavy string of length I makes
with the vertical at the points of support show that the height of one point above

the other te

cos -

120. Stability. Suppose a heavy bead is constrained to slide

on a wire in the form of a vertical circle. If the bead is at rest

at the highest point A or at the lowest point B of the circle, the

forces acting upon it are in equilibrium. If the bead is given a

small displacement from the highest point A, the forces are no

longer in equilibrium and the bead will move away from A. The
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position A is said to be a position of unstable equilibrium. If the

bead is given a small displacement from the lowest point B, the

forces are no longer in equilibrium, but the bead will return to its

original position, and, if the wire is smooth, will perform small

oscillations about B. The position B is said to be a position of

stable equilibrium.

Suppose the bead is constrained to slide on a horizontal wire.

At any point on the wire the forces acting on the bead are in

equilibrium. If the bead is given a small displacement from a

position P, it will remain in the new position. The position P is

said to be a position of neutral equilibrium.
To derive the analytic conditions for stability we make use

of the potential function (Chapter X). Suppose a particle is con-

strained to move without friction along a given path of any shape
in a plane conservative field of force. Assume that the poten-
tial U is a known function of the coordinates x and y. In addi-

tion to the force of the field the particle is acted upon by a force

of constraint (the pressure of the path) which, at any point of

the path, is equal in magnitude but opposite in direction to the

normal component of the force of the field. The resultant force

acting on the particle is therefore the tangential component of the

force of the field, and this is (Art. 94)

dx F 3
d* '*

The necessary and sufficient condition that any position A (xv

on the path shall be a position of equilibrium, is that

But this is the condition (Calculus, p. 118) that the function U
shall be a maximum or minimum.* Hence the

THEOREM. For a position of equilibrium of a particle in a con-

servative field offorce, the potential energy is either a maximum or a

minimum.

* It may happen that the graph of the function U(s) has a point of inflection for the

value s = Si, corresponding to the point A (xi, yi) of the path of the particle. For ex-

ample, suppose a heavy bead slides on a smooth wire in a vertical plane, and that the

points is a point of inflection where the tangent is horizontal. The point A is then a

position of equilibrium for the bead, but the potential function U is neither a maximum
nor a minimum. This special case is excluded in the statement of the theorems which

follow.
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The point A is a position of stable equilibrium if, when given
a small displacement from A in either direction, the particle tends

to return to A. From Art. 94 the force at any point in a con-

servative field is directed towards the region of lower potential.

Hence, if the particle returns to A, we may conclude that the

value of the potential at A is smaller than at neighboring points
of the path. In other words, at a position of stable equilibrium
the potential function is a minimum. Similarly, at a position of

unstable equilibrium the potential function is a maximum.

THEOREM. For a position of stable (unstable) equilibrium of a

particle in a conservative field of force, the potential energy is a

minimum (maximum).

Since maximum and minimum values of a continuous function

of one variable occur alternately, we have the

THEOREM. Along any given path in a conservative field of

force, positions of stable and unstable equilibrium occur alternately.

In solving problems to find the positions of equilibrium we

may either (1) express the potential in terms of s, the length of

arc along the curve, and use the condition = 0; or (2) we
ds

may find the components of force and use the condition

Fx + Fy
-- = where y is expressed in terms of x by the equa-

ls ds

tion of the given curve; or (3) we may choose the direction along
the curve so that s is an increasing function of x (or y~), and

examine the conditions under which U, as a function of x (or #),

is a maximum or minimum.

ILLUSTRATIVE EXAMPLES

1. A bead of mass m is constrained to move on a smooth curve y =f(x) in a

field of force of which the potential function is U= %mu2x2 + mgy. Find the

positions of equilibrium.*

* This problem in the plane is equivalent to the following :

A heavy bead slides on a wire in the form of the curve y f (x), the F-axis being
directed vertically upwards. The plane of the wire rotates about the F-axis with con-

stant angular velocity w. Determine the position of equilibrium of the bead.

Suppose the bead is in a position of equilibrium A(x, y). It then revolves around

the F-axis in a circle of radius z with angular velocity w. The bead exerts a horizontal

pressure on the wire equal to ^- = mw2z (Art. 54). For motion of the bead along the

wire the resultant of the forces acting is equivalent to that of the field specified above.
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Solution. The components of the force acting at any point of the field are

given by (Art. 91) , -
JT

*--**--.*
dx

For a position of equilibrium we have

_ dx
, -p, dy _ ft

ds ds

or,

Fx + Fy
dx
=

'

where ^ is found from the equation of the curve.
dx

Substituting the values from (1), the positions of equilibrium are found by

solving the equations

(2)

*=/(*).

2. Suppose the curve of example 1 is the straight line y = a; tan a. Find the

position of equilibrium and determine whether it is stable or unstable.

Solution. Substituting in equations (2) we have

u-x = g tan ,

y = x tan .

This set of equations has one solution, namely,

x = -2- tan a, y = tan2
.

w2 w2

To determine whether the equilibrium is stable or unstable, we express the

potential in terms of the length of arc measured from the origin. Since the curve

is a straight line, we have
x = s cos a, y = a sin a.

Hence
U= \ mu?s

2 cos2 a + mgs sin a.

Differentiating,

^- = mu2s cos2 -f mg sin a,
ds

Since the second derivative of 7 is negative, the function U is (Calculus, p. 124)

a maximum, and the position is one of unstable equilibrium.

PROBLEMS

1. Suppose the curve of illustrative example 1 is the parabola a;
2 = 2py. Show

that there is no position of neutral equilibrium unless g =puP. If this condition is

satisfied, then every point on the curve is a position of equilibrium.

2. If the curve is the circle x2 + y
2 = a2

,
find the position of equilibrium.

Ans. y = 8-.
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3. Suppose the curve is the cubical parabola 3 y = x3 . Find the position of

equilibrium and prove that it is stable. Ans. x = ,y = .

9 -V

4. Suppose the curve is the semicubical parabola 9y
2 = 4x3

. Find the position

(ft
'^ rfi

of equilibrium and prove that it is unstable. Ans. x *-, y =^ .

w4 3 w6

5. A heavy bead slides on a smooth wire of any shape in a vertical plane.

Discuss the positions of equilibrium.

6. A unit particle is constrained to move along the curve ny = x, in the field

of force of which the potential function is U = &>2x2 + 2gy. Show that the position

of equilibrium is unstable, neutral, or stable according as n is less than, equal to, or

greater than 2.

7. A unit particle is constrained to move along the circle x2 + y
2 = a2,

in the

field of force of which the potential function is U = Ax2 + By2
. Discuss the posi-

tions of equilibrium.

8. A unit particle is constrained to move along the ellipse + C ss 1, in the
a2

ft'
2

field of force of which the potential function is U x2 + y
2

. Discuss the positions

of equilibrium.

9. 'In the preceding problem suppose the potential of the field is U= -
.

Vx2 + y'
2



CHAPTER XIV

COLLECTION OF FORMULAS

For the convenience of the student we give the following list

of elementary formulas from Algebra, Geometry, Trigonometry,

Analytic Geometry, and Calculus.

FORMULAS FKOM ALGEBRA

1. Binomial Theorem (n being a positive integer):

II l

r 1

Also written:

( + 6)
n = an+ (

n
}an

-lb + l
n

}a
n -2bz + I

n
}a

n~3bs -]

n

r I

3. In the quadratic equation ax2 + bx+ c = 0,

when J2 4 a<? > 0, the roots are real and unequal ;

when b2 4 ac = 0, the roots are real and equal;
when 52 4 ac < 0, the roots are imaginary.

4. When a quadratic equation is reduced to the form

+px = q, p_ gum Q roots with sign changed,
and q = product of roots with sign changed.

5. In an arithmetic series,

6. In a geometric series,

rl a Cr
n

1)
8 =- = -*-'

r 1 r 1

267
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7. log ab = log a + log b. 9. log an = n log a.

8. log |
= log a -log b. 10. log -v'a = -

log a.
%

11. log 1 = 0. 12. loga a = l. 13. log- = - log a.
a

FORMULAS FROM GEOMETRY

14. Circumference of circle= 2 irr.*

15. Area of circle = irr2 . 16. Volume of prism = Ba.

17. Volume of pyramid = ^ Ba.

18. Volume of right circular cylinder = irr^a.

19. Lateral surface of right circular cylinder = 2 irra.

20. Total surface of right circular cylinder = 2 Trr(r + a).

21. Volume of right circular cone = ^irt^a.

22. Lateral surface of right circular cone = irrs.

23. Total surface of right circular cone = irr(r + ).

24. Volume of sphere = ^Trr
3

. 25. Surface of sphere=

FORMULAS FROM TRIGONOMETRY

26. sin x =
; cos x ; tan x =

esc x sec x cot x

nft sin x cos x
27. tana:=- ; cot x =--

cos x sin x

28. sin2 # + cos2 2; = 1
;
1 + tan2 x = sec2 x ; 1 + cot2 x = esc2 x.

fir \
29. sin:z;=

cos( z); 30. sin (TT re)
= sin x ;

\2 /

fir \cosx=sin{ x\; cos (TT #) = cos x ;

tan # = cot f x\. tan (TT z) = tan x.

31. sin (x + ^) = sin a; cos y + cos x sin ^.

32. sin (x y) = sin x cos y cos x sin y.

33. cos (x + y) = cos x cos ^ sin x sin y.

* In formulas 14-25 r denotes radius, a altitude, B area of base, and s slant height.
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34. cos (x y) = cos x cos y -f- sin x sin y.

tan x + tan y
35. tan (x + y) =

36. tan z - v) =

1 tan a; tan y

tan a: tan y- ~
1 + tan a: tan y

37. sin 2 x= 2 sin a; cos x\ ,
2 tan a;

tan L x =
cos 2 x = cos2 x sin2 x; 1 tan2 a;

'T* or or

38. sina;= 2 sin -cos-; 2tan-
tana; =- ,

cos x= cos2 1
sin2 ^ ; 1 tan2

^

39. cos2 x = + | cos 2 a;; sin2 x = | |'
cos 2 a;.

40. 1 + cosa; = 2 cos2 - ; 1 cos a; = 2sin2 --

.. . ^ cos x x ^ + cos x
41.

tan^ =
-h GOSX

42. sin x + sin y = 2 sin ^ (a; + y) cos | (a;
~

#)

43. sin a: sin /
= 2 cos ^ (a; + y) sin | (# #)

44. cos a; + cos y = 2 cos |(# + y) cos ^ (a; y~).

45. cos a; cos y = 2 sin J (a; + y) sin J (a; y).

46. = = -
; Law of Sines.

sin A sin B sin (7

47. a2 = b2 + c2 2 be cos ^4. ; Law of Cosines.

FORMULAS FROM ANALYTIC GEOMETRY

48. d = V(a;j a?
2)

2 + (yx y2)
2

;
distance between points

On 2/i) and (a-2 , ya).

49. t? = - '^ 1
; distance from line

t V^2 + B2 Ax + By+ C= to (a^, ^).

50. x = ^ ~, y = -^ ; (a;, y) is the point dividing the

line PP in the ratio \.
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51. x = XQ+ x\ y = ?/ + y' ; transforming to new origin (# , y ).

52. x = x' cos y' sin 6, y = x' sin + y' cos 0; transforming
to new axes making the angle 6 with old.

53. x = p cos Q, y = p sin ; transforming from rectangular to

polar coordinates._ y
54. p = Vic2 + #

2
,
= arc tan

; transforming from polar to

rectangular coordinates.

55. Different forms of equation of a straight line :

(a)
y ~ y* = y^y, two-point form ;

*

(J)
- 4- y~ = 1, intercept form ;

a o

(V) y y^ = m(x 2^), slope-point form ;

(d*) y = mx + , slope-intercept form ;

(ji) x cos a. + y sin a = p, normal form
;

(/) Ax + By +(7=0, general form.

56. Distance from the line x cos a. + y sin a p = to the

point (2^, y^)
= x

l
co's a + y^ sin a p.

wn _ ^/
57. tan = q

*-^
; angle between two lines whose slopes are

, l + m,m<,m
1
and mv

m^ = m
z
when lines are parallel,

and m, = -- when lines are perpendicular.

58. (x a)
2 + (y /3)

2 = r2 ; equation of circle with center

(a, /3) and radius r.

59. d = V(rrx
#
2)

2 + (/! y2)
2

"*" (2i
~~ Z2)

2
' distance between

points (xv yv Zj) and O2 , ya , z
2).

Crt , Ax* + 5?/, + C^, + D j. , P
60. a = l - 71

; distance from.planeVA2 + & + C2

Ax + By+ (7z + D = to point (aij, 3/r Zj).

61. cos2 a + cos2 /3 + cos2 7 = 1
; a, /S, 7 being the direction

angles of a line in space.
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62. x cos a -f y cos /3 + z cos 7 ; projection of the line joining

(0, 0, 0) and (#, y, z) upon a line whose direction angles are a, /3, 7.

63. (x a)
2 + (y /3)

2 + (z 7)
2 = r2

; equation of sphere

with center (a, /S, 7) and radius r.

FORMULAS FROM CALCULUS

64. Radius of curvature,

(a) Rectangular coordinates.

R KIT!
-" J9

'

&y
dz*

6 Polar coordinates.

p
2-p^+^(^

(<?) Parametric form.

x.

65. Plane area.

(a) Rectangular coordinates.

A = I ydx=ll dyd

(5) Polar coordinates.

A=%CP
2d0= C Cpdpdd.

66. Length of arc.

(a) Rectangular coordinates.

(5) Polar coordinates.

s =
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67. Volume of solid of revolution about the X-axis.

Ix.

68. Area of surface of revolution about the Jf-axis.

A

"= TT i y^d

//* r /Wf
yds = -2ir

y\
1 + PfJ L vfc

69. Area of any surface, z =/(#, y).

70. Volume of any solid.

F= C C Cdzdydx.

DIFFERENTIAL EQUATIONS

71. The differential equation of HARMONIC MOTION.

The general solution may be written in the following forms

O) x =c^^ + c
2
e~ kt^,

x = A cos kt + J9sin let.

We give to (5) another form, thus :

Draw a right triangle with sides A arid B. Since A and _Z? are

arbitrary constants, this right triangle is ar-

A bitrary, and hence also the hypotenuse O and

. the angle ft- Now,

~B A = O sin ,
5 = Ccosfr

and substitution in (5) gives

a; = (7(sin /3 cos kt + cos /3 sin kf), or,

(V) a; = Osin (& + /3).

If in (<?) we write for /3, yS' H , we obtain

x = (7sin kt + ft' + , or
\

(d) x = cos (kt + /3').
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In these formulas cv c
2 , A, B, C, /3, /3' denote arbitrary

constants.

72. - IPx 0.

The general solution is

73. The differential equation of DAMPED VIBRATION.

The general solution is

cos -/i i + sn-/i, or

ar = Ce-'
4 ' cos &2 - /t

2
t

74. The differential equation of harmonic motion with a con-

stant disturbing force.

_| + &x = c.

dt2

The general solution is

x = A cos kt + B sin let -\ -, or

x = sin (Jet + /3) -f-

75. The differential equation of FORCED VIBRATION.

(#) h kzx = L cos nt 4- J^sin nt, where n^k.

The general solution is

x = A cos kt + B sin kt -\
- - - cos nt + sin nt,

where A and B are arbitrary constants.

(J)
- + kzx = L cos let +M sin kt.

The general solution is

L M
x = A cos kt- + B sin kt + ^ * sin # t cos &.

2 k 2k
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FORMULAS FOR DIFFERENTIATION

In these formulas, w, i>, and w denote variable quantities which
are functions of x.

I
|Uo.

II
** = i.
dx

TTT d / . \ dii . dv dw
dx dx dx dx

IV ^-(cv} = c
(^-.

dx
'

dx

VI (V\VZ Vn~)
= (v2Vs Vn)dx dx

' '"
dx

da;

VII ^-(v) = nv-ld̂-.
dx dx

VTT n ('fn\ -nrn-1-I.A VV ^^
I Jj I IVJU .

VIII
d/\ dx dx

dxU/ 2

Villa Af\ = 5.
dx \c / c

du
, , .

C
^Ivm 6 r( )

= -
dx V^/ v

dv

IX A(i g t? )
= loga e.^.

dx v

dv

TV d ,, dx
IA. a (log v) =dx v

X (a
1

')
= a" log a

dx dx

dx dx

XI ^-(M") = W-1
^-.dx dx dx
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XII



276 THEORETICAL MECHANICS

INTEGRALS FOR REFERENCE

SOME ELEMENTARY FORMS

1. f (du dv dw )= \du \dv (dw .

2. (adv = a (dv. 4. (xndx = -^^- + C,J J J n + 1

3. V(z) = V(X><*x=/(x) + C. 5.

*

= log x + C.

FORMS CONTAINING INTEGRAL POWERS or a + bx

8.
| F(x, a + bx)dx. Try one of the substitutions, z = a + bx, xs = a + bx.

9. -
J a + bx

10.
J a + bx

11. f **
liog^^: + a

J x(a + bx) a x

12. C dx - 1
|

b
log

a + to
| C.

J oc
2
(a + &c) a* a2 x

13. _5E = iog a + 6a; + _ + C.

14. f
^^ = -fa + 6x - 2 a log(a + 6x) -- 1 + C.

J (a + te)
2 63 L a + bx]

15. f_^_ =_1__ llog a + 6g
+(7.

J X( + 6) 2 a (a + fex) a2 x

16 r Xffa = l
['

-
-1

I

ffl 1
| C

J (a + 6x)
3 62 L a + bx 2(a + 6x)

2J

FORMS CONTAINING 2 + x2
, a2 x2

,
a + 6x", a + 6x2

17.
a2 + x2 a a J 1 + x2

is. r dx = j-iog^ + c
;

r ^ = j_
Ja2 -x2 2a a-x J x2 - a2 2 a
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20. -6r 2ab a-bx

21. fx(a + &X")P dx

6(np 4- TO + 1) b(np + m + 1)

_
n(a

22. *( + bx)p dx = s-*1^ + &*) + "P
f^(a

np + m + 1 np + m + 1 J

23. .

xm(a +
1 (TO n + np 1)6 C dx

(m l)oa;
m-1

(a + ftx")*-
1 (m l)a J xm~n(a + bxn)p

/*

J xm-

24. f i

J xm(a"(a + 6x")p

1
,
m n + np 1 C dx

an Op l)x-1
(a + bx")p~

l an(p 1) J xm (a + bxn)p~
l

> I =
; : ;J x* a(m \)x

m~ a(m 1)

(a + frx"> (7x _ C + &X")P , _ anp C(a + &x")p-
1 dx

_

.r
m

(jip m + l)x
m~1 wp m + 1 J :c'"

r a^fZx __xm-+i__ (? n + 1) T xm~ ndx

J (a + bx)p
~
b(m - np + l)(a + bxn

)p~
l b(m - np + 1) J (a + bx")"

28

29.

f xmdx __xro+1__ m + n np + 1 f x'dx

J (a + bxn)p~ an(pl)(a + bx")p-
1 an(p - 1) J (a + ftx")?-

1

^ =_1__ f_*_ +(2n-3)f_**__I
a + x2)" 2(n - l)a

2
L(a

2 + x2)"-
1 V (a

2
-f x'^U

r (fa = 1
f

x
\ (2n

J (a + te2)" 2(
- l)a L(a + 6x2)-i (a

*fo = lf
^

+ 6x2n 2Ja + te

32 _ __ 1 r <?x~

33.
dx 1 i xn . n

x(a + 6x") an a + bx"

34. f ^ - = If ^ *f *L-
J x'2 (a + 6x2)" a J x2(a + ftx2)"-

1 a J (a + 6x2

35. f^^ = -i.
log (

x2 + f) + C. 37. f dx
,. = J-i g j^ + C.

J a + 6x2 26 V 6/ J x(a + 6 2a

36 = x a C dx 38' f dx - - 1
-

6 f
'

J x2
(a + 6x2

) ax a J aa 4- fex2 ft 6 a + 6x2
'

x2
(a + 6x2

) ax a J a + fex2

39 f dx _ x J_ f dx

J (a -f- 6x2
)
2 2 a(a + 6x2 ) 2 a J a + 6x2
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FORMS CONTAINING Va + bx

40.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

!*
J*vs

15 b'
2

105 b3

xdx

Va

15 bs

for a>0 .

x Va + bx Va Va + bx

J
dx = -4=tan-^|+ c, for a < 0.

x2Va + bx ax

bx

FORMS CONTAINING Vx2 + a2

f (x
2 + 2

)*dx = - Vx2 + a2 + log (x + Vx2 + a2) + a
/ s 3

(x
2 + a2)^ dx, = f (2 x2 + 5 a2

) Vx2 + a2 + log (x +
8 8

n + 1

a

(7.

fx
2
(x

2 + a2)^x = f (2 x
2 + a2) Vx2 + a2 - -log (x + Vx2 + a2

) + (7.
^ 8 8

r_

IT

tlx

+ 2
)

-
log (x + Vx2 + a2

) 4 a

C.

j*

xdx

(x
2 + a2

+ a2
)

- =
! Vx

2 + a2 - 5Llog( + Vx2 + 2

2 " Ji
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"$-
58.

j*

xi + a2)f
vx2 + a2

dx 1 , x

: + log(x+' C.

a

i

J

dx

x2
(x

2 4 a2)

/x2 + a2

a2x

4 2
)'

. r

X
61.

62
J(x^+| X

FORMS CONTAINING Vx2 a2

63.
j*

(x
2 - a2

)* dx =
x

- Vx2 - a2 - ^ log (x + Vx2 - a2
) + C.

64. f (x
2 - a2

)^dx = -
(2 x

2 - 5 a2) Vx2 - a2 + log (x + Vx2 - a2) 4- (7.
/ 8 8

n

J ft 4 1 n + \J
n+ 2

r - (x% (]2}~2~

J n -\- 2

67. fx
2
(x

2 - a2
) ^dx = -

(2 x
2 - a2

)Vx2 - a2 - ^ log (x 4 Vx2 - a2
) + C.

J 8

68. (* = log (x 4- Vx2 - a2
) 4 C.

(x
2 - a2)*

69 ' ^o
fe

^ =~^A^+C'

70..

f
xdx

=Vx^T
"*

(x
2 - a2

)*

7L

72.

73.

JE

(x
2 - a2 /x2 - a2

4- log (x + Vx2 -a2)+ <7.
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74.

75.

76.

THEORETICAL MECHANICS

C dx _ Vx2 a-

Oa~ a?x
x2

(x
2 a2

)
2

dx -Jy? a2 1 sec-? + (7.

a = V^^ - a cos-*
<* + (?.

x x

78.

79.

80.

81.

82.

83.

84.

87.

88.

89.

90.

91.

FORMS CONTAINING Va2 x2

f (a
2 - x2)*dx = - Va2 - x* + sin- 1 - + C.

J 2 2 a

f (a
2 - x2) $dx = -

(5 a
2 - 2 a;

2
) Va2 - ^ + sin-i ? + (7.

/ 8 8 a

71 + 2
(7.

j*
x(

2 -

fx2
(a

2 - x2)* dx = -
(2 x

2 - a2) Va2 - x2 + - sin-i - + C.
./ 8 8 a

f
(a
2_ a;

2
)
4

. 85.

a

_ X2 4.

(a
2 -

(a
2 -x2

)?
^ 2 - &

xmdx x1"-1
/-o- ,

i

dx.

rf(nl 9*^8^y^W
^^

.*/ ^

dx

x2(a
2-x2

)-

C dx_

J
v a2 x2

C.

a + Va2 x2
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/ / o

92. f^f
J x

J^93
72

FORMS CONTAINING V2 ax x'2 , V'2 ox + x2

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

-i + (7.

a

f
(lx = vers- 1 -

; f
ffo: = vers- 1 x + (7.

^ V2 ax - x2 > V2x - x2

dx

m + 2 m + 2

2 ax - a-
2 m - 1

a f
J

J:
xmt?x

/2 jjj Dosff* (2m l)a J m i

"-i-v/2 ax x2 (2m l)a f xf"- ]

f\/2ax
J x (2m-3)axm

^ V2 ax - x2

731-3 f \/2 ax - x2^i_r
-3)a^

(?X.

f <? __ V2ax- x2

^xV2ax x^ ax

^^ = V2 ax - x2 + a vers- 1 - + C'.

V2 ax - x2

V2 ax x2
V2 ax - x2 + a2 vers'1 - + (7.

2 a

/

3 ax3

x a

(2 ax - x2)^
a2V2 ax - x2

X(?X _ X
|_

.-,

/o/ti" 2\^ a"v2ax-x^

C^Cx, V2ax-x2
)ax = (F(z + a, Va2 -

J J
, where z = x a.
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dxHO. = log(a; + a + V2ax + x-2)+ C.
J V2 ax + x4

111.
|
F(x, V2 ax + x2)a"x = \ F(z a, Vz- a2

)dz, where z = x + a.

FORMS CONTAINING a + bx ex2

112. f-^- 2
tan-i

2 cx +2- + c, when b*< 4 gc.
J a + 6x + ex2 V4 ac - b2 V4 ac - 62

.

/-J (I

113
J a +

11 A r dx
114. \ = iug ======

a + ox ex-* -y/^2 4. 4 ac vP 4- 4 ac 2 ex + 6

us. r
dx

=4- iQg'
Vc

2 ex + 6 + V&'2

J;

116. Va + bx + cx*dx

4c

117. f
*^

~
+ bx + cx2_>- iog (2 ex + b + 2VcVa + bx + ex2) + C.

Vc Vfe"-
! + 4 ac

xdx
119.

Va + bx + ex2 c
<2(A

120 f xdx _ _ Va + bx . cx2 . b t
2 cx 6 .

J Va + fcx-cx2 c
2 c^

2

OTHER ALGEBRAIC FORMS

121.
\ -Jp=^ dx = V(a + x) (6 + x) + (a

-
6) log (V^+ + V& + x) + C.

' ~\~ X

122. l^l^x = V(^^)(& + x) + ( + &)sin-
1AF^'o+x 'a + i

123. fJ^-_5 dx =- V(a + x) (6 - x)
-

(a + 6) sin-K/^ "
o x 'a

124 . f -x/

11-^ dx=- vT^x2 + sin-ix + C.
J ' 1 x

<** _
V(x- a)(/3-x)

125. f̂Vx-
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EXPONENTIAL AND TEIGONOMETRIC FORMS

126. a-to = + C.

127. exdx = ex + C.

130. i cos xdx = sin x + C.

128. e<Jx= + C.
a

131. ( tan xdx = log sec x = log cos x + C.

132. (cot xdx = log sin x + C.

133. f sec xdx = f-^- = log(sec x + tan x) = log tan (
- + 2\ + C.

J J cos x \4 2 /

134. fcosec *dx = f -^- = log(cosec x cot x) - log tan
x + C.

J J sin x 2

135. (setfxdx = tan a; + C. 138. fcosec* cotaxZx = cosec *+C.

136. fcosec'xdx = - cot x + C. 139 -

j"sin

2xdx = * -
1

sin 2 x + C.

137. ("sec x tan xdx = sec x + C. 14 -

Jeoeftwte
=
|
+ 1 8in 2 x + C.

141. fsinxdx = -
sin""lxcosa; +"^ fsln-te.J n n J

142.
x n--J f cosn

-

n J

(7x143 (*
ffa _ _ 1 cosx . n 2 f

J sinnx 7 1 sin"- 1* i 1 J sin"-'2x

144 f dz _ 1 sinx
,

ft 2 T dx

J cos"x n I cos"- 1* n 1 J cos"-'2x

145. cos"* sinxdx = cos>"" lic sin"+la:

m + n m + u

146. I cosmx sinnxdx = ' +
J m + n m 4 .

147 C dx _ I 1
,
m + n-2 C dx

J sinmx cos"* n 1 $,mm~ lx cos"-1* n 1 J sinmx cos"-2*

148 f ^ ^ ^4- m + n ^ C (?x

J sinmx cos"x TO 1 sin'"-1x cos"- 1* JM 1 ^ sin- 2* cos"*

,40 rcosmxtte _ cosm+1x _ m n + 2 Ccosmxdx
<

J sin"x (n ^sin"-
1* n 1 J sin"-2*

IBfl rcosmx<?x _ cos"1" 1* . m 1 rcosm-2xd*

J sin"x (TO n)sin"-
1x in nJ sin"x

151. fsin x cos"xd* = - cos"+la; + C.
J n + 1
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15l fsinx cos xcZx = sin"+lx + C.
J n + 1

153. ftanxox = tan"" la; - ftan-2x(Zx + (7.

J 1 J

f pntn lv f
154. I cofxdx = - == - - \ cot-2xox + C.

J n I J

155. fsin mx sin nxdx = - sin
(
m + *) + sin

(
m ~ "> + C.

J 2(m + n) 2(m n)

156. fcos mx cos note = sin <m + n >x + sin
(
m ~

)* + C.
J 2(m + ) 2(m - re)

157. fsin mx cos nxdx = - cos (m + n^ - COS ^OT " ra )x + C.
J . 2(m + n) 2(m - n)

158-

Vft a tan + V6 + a
159>

I j_^r> =
/

loS-^-- + C, when a < 6.Ja + ftcos* - *

'

a tan - + 6 - V&2 - a2mr ax
)
-

,
, . ^

=
. log- + C, when a<b.-

162 . f---**- = 1 tan-i
f
*>J*\ + C.

J a2 cos2* + &2 sin2x a& \ a J

(V* si
J

f - sin xdx =
>^

163. (V* sin nxdx = e"z (a sin x ~ n cos Ma;
) + (7 ;

J oa + re
2

164. fe*cos nxc?x = "(" sin ^ + q cos na:) + (7;J a2 + n2

f e- cos xdx = ^CMng + eosa;) + c
2

J/>axxe<f7x = s_ (x - 1) + C.

166. xnea*dx = ^-^- -
J a a

167. (Wa-x = ^^- - -^
fa-z-'dr.J i log a m log J
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ice Ca'dx a*
| log a faxdx

Ibo. I = . H i
-

r

J xm (mi)xm~ 1 m 1J xm~ l

169. JV cosxdx = "eog-ig(aeoBg + nring) + nQi-1)
J eax cos

-2^.

170. ( x"' cos crxdx = - (ax sin ax + TO cos ax)
m

\
m ~

) ( xm~2 cos axdx.
J a2 a2 J

LOGARITHMIC FORMS

171.
j log xdx = x log x x + (7.

172. f
J&L = log (log x) + log x + 1 Iog

2x + ....

J log x 2J

173.
x log x

174. (V log xax = x+if^ -
r-J-r^l + C.

J Ln+1 (n + l)
2J

175. fe-log xdx = eazlo" x - 1 f e-dx.
J a aJ x

176. (*x log" xdx =
a:
">+1

log" x ^
(*x

m
log"'

1 xdx.
J TO + I m +U

177 Cxmdx __ xm+l
. m + 1 C xmdx

J log"x (n 1) log"-^ n 1 J log"-^
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The numbers refer to the pages

Acceleration, 45, 69 ; tangential and nor- Dynamic pressure, 116

mal, 80

Angle of friction, 150

Angular velocity, 84
; momentum, 133

Areal velocity, 134, 164

Attraction of spheres, 214

Atwood's machine, 139

Axioms on force action, 100

Bounding parabola, 144

Catenary, 260

Center of gravity, 1, 2, 5
;

of combined

solids, 14
;

of wires, 17

Center of moments, 131

Central field of force, 163

Centrifugal force, 118

Centrodes, 229

Circular motion, 87

Coefficient of elasticity, 127
;
of friction,

150, 255

Composition of harmonic motions, 193,

196

Compound pendulum, 237

Concurrent forces, 100

Conservation of energy, 206
;
of moment

of momentum, 221

Conservative field of force, 205

Constant field of force, 137

Constrained motion, 116, 148

Coplanar forces, 245

Cord, flexible, 258

Cycloid, motion of a particle on a, 158

Damped vibration, 51, 202

Damping factor, 202

Dimensions of units, 2, 8, 22, 29, 44, 46,

92, 111, 113, 127

Distance-time diagram, 46

Discussion of rectilinear motion, 46
;
of

plane motion, 70

Dynamics, 42

Ellipse of inertia, 37

Energy, kinetic, 113, 232
; potential, 206

Energy equation, 114, 135

Epoch, 189

Equation of motion, 42, 64

Equilibrium of forces, 245
;

of flexible

cords, 258

Equipotential lines, 207

Field of force, 137
; central, 163

;
har-

monic, 186, 198
; conservative, 205

Force, 90
;
units of, 92

; resultant, 95
;

concurrent, 100
; centrifugal, 118

;
mo-

ments, 130
;
of restitution, 188

;
lines

of, 207

Force equations, 93, 101, 105, 135

Forced vibrations, 196

Formulas in dynamics of a particle, 135

Frequency of vibration, 189

Friction, 150, 213, 254

Fundamental equations of motion, of

particles, 134
;
of rigid body, 236

Gravitation, universal, 183

Gravity, motion under, 139, 142
;
work

done by, 224

Harmonic field of force, 186

Harmonic motion, 49, 159, 188

Height of projectile, 143

Hooke's law, 112

Impact, 127

Impulse, 125
; equation, 126, 136

Inclined plane, 149

Inertia ellipse, 37

Instantaneous axis, 228

Intrinsic force equations, 105, 135
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Kepler, 182

Kinematics, 42, 55

Kinetic energy, 113, 232

Kinetics, 42, 90

Lamina, 25

Law of areas, 165
;
of universal gravita-

tion, 183

Laws of friction, 150, 265
;

of motion,

90, 117

Lever arm, 131

Line of quickest descent, 152

Lines of force, 207

Lissajous' curves, 199

Mass-center, motion of, 219, 232

Moment equation, 132, 136, 220, 234

ertia, 21, 24
;
of momentum, 132

Momentum, 90

Motion in a prescribed path, 76

Motion, types of, 226

Newton, 86, 90, 117, 127, 182, 213

Newtonian potential, 213

Non-conservative forces, 213

Orbit, 163
; differential equation of, 170

Pappus, theorems of, 18

Pendulum, simple, 154
; cycloidal, 158

;

seconds, 160
; compound, 237

Period of vibration, 50

Phase, 189

Planetary motion, 182

Polar coordinates, 83, 105, 135

Potential function, 167, 205

206
; newtonian, 213

Power, 122

Product of inertia, 38

Projectile, 142

Eadial velocity, 84

Radius of gyration, 23

Range of projectile, 143

Resisting medium, 95, 200

Restitution, impulse of, 127

Rigid body, 226

Rotation, 87, 227

Route's rules, 34

Screw motion, 229

Seconds pendulum, 160

energy,

Moment of area, 1
;
of mass, 7, 9 ; of in-

sPeed
;

44

Stability, 262

Static pressure, 118

Symmetry, 3

System of bodies, 238
;
of particles, 36,

217
'

Tautochronous curve, 160

Translation, 226

Uniplanar motion, 227

Units, fundamental and derived, 2
;
of

force, 92
;
of work, 123

;
of power, 123

"Sectors, 55
;
addition of, 56

;
subtraction

of, 57
; resolution of, 58

Velocity, 43, 65, 84

Weight, 91

Work, 109, 231
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